

AI4PV Final event

28th June 2023, online event

- AI4PV in a nutshell
- Diagnosing issues in large-scale Photovoltaic Plants using AI & Digital Twin technologies
- An introduction to digital twins of PV inverters & maintenance policy recommendations
- AI to optimize PV cleaning schedule

AI4PV in a nutshell

- Christian Verrecchia (R&D Engineer)

AI4PV in a nutshell

Christian Verrecchia – R&D Engineer at EDP NEW

The AI4PV project in a nutshell

3 Partners

Objectives

Specific objective 1 - Increasing PV Plant reliability

• Development of advanced and automated functions for data analysis for fault detection for critical elements of PV plant and its grid integration. Comparing real data with simulation, providing insights of problems at early stages.

• Provide improved plant reliability optimizing the O&M tasks and procedures through an AI based recommendation engine tasks based on the impact of failures or underperformance. KPI: number of maintenance actions at validation site

Specific objective 2 - Optimizing PV Plant generation performance

• Underperformance and degradation problems at PV plants can lead to a loss of production, but usually they don't trigger an alarm so that the O&M or the Asset Management teams start a correction action. This way they are usually unnoticed until they get to a certain level, but meanwhile there has been loss of energy production during months. The objective is to detect this at early stages through advanced data analysis from Scada and sensor data.

AI4PV outcome and validation

Outcome and tools

Fault prediction and detection

- DT for normality analysis;
- Al for fault prediction and classification

Optimizing O&M policies

• RL for defining optimal policies and maximize Rol

Demonstration

Validation in a real PV park

More info at

Enjoy the webinar and....

Don't forget to ask your question in the chat!

Diagnosing issues in large-scale Photovoltaic Plants using AI & Digital Twin technologies

-Jose Garcia-Franquelo (Head of Innovation) -Miguel Ángel Delgado Molina (Data Analyst)

Diagnosing Issues in Large-Scale Photovoltaic Pl ants Using AI and Digital Twin Technologies

Miguel Ángel Delgado Molina José García Franquelo ISOTROL

- Isotrol overview
- The need for advanced analytical solutions
- Success cases
- Takeaways

Isotrol overview

• The need for advanced analytical solutions

- Success cases
- Takeaways

Isotrol overview

Covering the World with our Solutions

+120 GW and outstanding references in more than 40 countries

Isotrol overview

• The need for advanced analytical solutions

- Success cases
- Takeaways

The need for advanced analytical solutions

Renewable portfolio management

Large, complex and multi-technology

Data

Big, with quality issues. Economic criterion at plant sensorization

SCADAs & Control centers

Focused in operation, not in analytics: availability

So how to identify that there is a problem, where and why?

The need for advanced analytical solutions

What they are and what we can expect from them. Maturity model & added value

CôMPE

The need for advanced analytical solutions

Why use a digital twin for diagnosing PV Plant Issues

A model capable of replicating the behaviour of plant

Digital Twin provides the behavior of the different incidents modelled for each type of incident (dirt, ageing, tracker mismatch, string disconnections, partial shadows)

NI^{II} Sotrol

Isotrol overview

• The need for advanced analytical solutions

- Success cases
- Takeaways

Success cases Asset simulation: Replicate the real world

Success cases Problem 1: Datasheet compliance validation

SPECIFICATIONS

Module Type	JKM45 JKM455	JKM455M-7RL3 JKM455M-7RL3-V		JKM460M-7RL3 JKM460M-7RL3-V		JKM465M-7RL3 JKM465M-7RL3-V	
	STC	NOCT	STC	NOCT	STC	NOCT	
Maximum Power (Pmax)	455Wp	339Wp	460Wp	342Wp	465Wp	346Wp	
Maximum Power Voltage (Vmp)	42.97V	39.32V	43.08V	39.43V	43.18V	39.58V	
Maximum Power Current (Imp)	10.59A	8.61A	10.68A	8.68A	10.77A	8.74A	
Open-circuit Voltage (Voc)	51.60V	48.70V	51.70V	48.80V	51.92V	49.01V	
Short-circuit Current (Isc)	11.41A	9.22A	11.50A	9.29A	11.59A	9.36A	
Module Efficiency STC (%)	20.26%		20.49%		20.71%		
Operating Temperature(°C)					-40°C~+85°C		
Maximum system voltage					1000/1500VDC (IEC)		
Maximum series fuse rating				20A			
Power tolerance				0~+3%			
Temperature coefficients of Pmax	rature coefficients of Pmax				-0.35%/°C		
Temperature coefficients of Voc					-0.28%/°C		
Temperature coefficients of Isc					0.048%/°C		
Nominal operating cell temperature (NOCT)					45±2°C		

Success cases Problem 1: Datasheet compliance validation - MPPT point

Success cases

Problem 1: Datasheet compliance validation - Temperature coefficient

Success cases Problem 2: Sensor malfunction detection & data correction

POA (weather station) POA global (model) 1000 POA global (meteo) 800 lrradiance [kW/m²] 600 400 200 0 · 04-03 00 04-03 03 04-03 15 04-03 18 04-03 06 04-03 09 04-03 12 04-03 21 04-04 00 Timestamp [MM-DD HH] PORTUGAL 202 C MPETE 2020 European Union isotrol ЬUI European Regiona

@CDTIoficia

evelopment Fund

Isotrol overview

• The need for advanced analytical solutions

- Success cases
- Takeaways

Takeaways

Integrating the results in a easy to use tool for AM and O&M teams

C[®]MPETE 2020

Takeaways

Detecting issues with Digital Twin

DT and AI provides better accuracy than time-series ML analysis

Better and quicker insights of issues

- **03** Faster adaptation to different plant typologies
- 04
- Increasing the yield and profitability of PV plants

Thanks for your attention!

Don't forget to ask your question in the chat...

An introduction to digital twins of PV inverters & maintenance policy recommendations

- Louelson Costa (Assistant Researcher) - Flávia Barbosa (Senior Researcher)

An Introduction to Digital Twins of PV Inverters and Maintenance Policy Recommendations

Louelson Costa (INESCTEC) Flávia Barbosa (INESCTEC)

- INESC TEC
- Digital Twin of PV Inverters
 - Introduction
 - Definition
 - Simulation and validation
 - Fault classification
 - Conclusion
- Maintenance Policy Recommendations
- References

• INESC TEC

- Digital Twin of PV Inverters
 - Introduction
 - Definition
 - Simulation and validation
 - Fault classification
 - Conclusion
- Maintenance Policy Recommendations
- References

4

INESC TEC 35 YEARS LEADING R&D IN ENGINEERING TURNING SCIENCE INTO ECONOMIC VALUE

2020

@CDTIoficio

Development Fund

• INESC TEC

- Digital Twin of PV Inverters
 - Introduction
 - Definition
 - Simulation and validation
 - Fault classification
 - Conclusion
- Maintenance Policy Recommendations
- References

6

The PVPP and the problems [1]

• INESC TEC

• Digital Twin of PV Inverters

- Introduction
- Definition
- Simulation and validation
- Fault classification
- Conclusion
- Maintenance Policy Recommendations
- References

What is a digital twin after all [2, 3]?

- First introduced in 2002 by Michael Grieves:
 - "Virtual representation of real-world entities and processes, synchronized at a specified frequency and fidelity."
- DT must have three basic elements:
 - A real space containing a physical object
 - A virtual space containing a virtual object
 - A link for data flow from virtual to real space and vice-versa

From a power electronics point of view

- Physical object:
 - PVPP, considering the PV modules, JBs, PV inverters, transformer and gri
- Virtual object:
 - MATLAB/Simulink simulation containing:
 - PV strings, junction boxes, PV inverter, power transformer, grid
- A link for data flow:
 - Usage of API to download the daily meteorological and SCADA data, and to upload daily fault and failure report, maintenance recommendation, etc.

• INESC TEC

• Digital Twin of PV Inverters

- Introduction
- Definition
- Simulation and validation
- Fault classification
- Conclusion
- Maintenance Policy Recommendations
- References

How to validate our model [5]?

How to generate the faults [6, 7]?

- Functions to control the current simulation condition of the inverter
 - Randomly selected of fault of the day, fault starting time, fault location, inverter under fault
 - Daily, weekly or monthly periodicity
- Degradation evolution of dcCabDeg included

faultType	Condition	What happens?	
00	noFault	Nothing really	
01	dcCabDeg	Series resistance	
02	dcCabOC	Cabe disconnection	
03	switchDeg	Ron resistance	
04	switchOC	Switch always open	
05	dcCabSC	Short resistance between + and -	
06	phphSC	Short resistance between phases	
07	MPPT	Reference voltage campling (VdcMax)	

2020 22

Fault-free and faulty data

• INESC TEC

• Digital Twin of PV Inverters

- Introduction
- Definition
- Simulation and data flow
- Fault classification
- Conclusion
- Maintenance Policy Recommendations
- References

AI4PV particular case

The best model: LightGBM

Preliminary model inputs: calendar, weather, inverter, sky type (Acc.: 96.7%; F1 macro: 0.967)

Best model

inputs: calendar, weather, inverter, sky type, time, lags, statistics (Acc.: 98.2%; F1 macro: 0.982)

• INESC TEC

• Digital Twin of PV Inverters

- Introduction
- Definition
- Simulation and validation
- Fault classification
- Conclusion
- Maintenance Policy Recommendations
- References

• INESC TEC

- Digital Twin of PV Inverters
 - Introduction
 - Definition
 - Simulation and validation
 - Fault classification
 - Conclusion
- Maintenance Policy Recommendations
- References

Inverters Maintenance Recomendation

Markov Decision Process

maintenance

Set of states:

- N: new equipment
- D: equipment with degradation
- F: equipment breakdown Set of actions:
- No action
- Minor maintenance
- Major maintenance Rewards:
- Irradiance
- Efficiency
- Maintenance costs

Failure Probability

Mean time between failures - MTBF:

$$MTBF = \frac{\sum \text{ total operational time}}{\text{number of failires}}$$

Failure rate λ during day d:

$$\lambda(d) = \frac{1}{MTBF}$$

Failure occurrence: a non-homogeneous Poisson process with arrival rate $\lambda(d)$:

Transition probabilities: $p_F(t_k) = 1 - \left[e^{\lambda(d) \cdot \Delta t}\right]$ $p_k(s_j | s_i, a = 0) = p_F(t_k)$ (no maintenance action) $p_k(s_j | s_i, a = 0) = p^F(t_k) 1_{/\sigma}$ (maintenance action level σ) Reliability, the probability of the equipment working in perfect condition in the following t_k days.

Reward:

$$max \ Z = \sum_{t \in T} R(I^t | a_n^t) + \sum_{k \in K} E(s_k^t) - C(a_n^t)$$

Maintenance recomendations

MAPpy - Maintenance Actions Planning for PhotoVoltaic Systems

New component

				MAPpy - MAintenance Actions Planning for Photovoltaic			
	Planning Configuration New Cor	nponent		Systems - Resu	lts Report	5	
6 months planning	Start date for planning End date for planning	01/01/2023 ⁺ 30/06/2023 ⁺	MAP PV	Component Type Power Conditioning	Component Life	Location 15.15, 15.15	Life Afte
	Component Type Component Life (in days)	Inverter •		Schedule Mainten 28/1/2023 - 24/2/2023 -	ance for the period - 12/3/2023 - 2/4/2023 - 2	1/1/2023 until 30 / 23/4/2023 - 5/6/2023	/6/2023
		Run		Schedule Replace	ement for the period	1/1/2023 until 30	/6/2023
	MAPpv - Maintenance Act Planning Configuration New Com	ions Planning for PhotoVoltaic	Systems 8	MAPpv - MAinte Systems - Resu	enance Actions Pl Its Report	lanning for Phot	tovoltaic
1 year	Start date for planning End date for planning	01/01/2023 ⁺ 31/12/2023 ⁺	PV	Component Type Power Conditioning	Component Life	Location 15.15, 15.15	Life Afte
planning	Component Type Component Life (in days)	Inverter •		Schedule Mainten 14/2/2023 - 11/3/2023 - 20/10/2023 - 3/11/2023	ance for the period 31/3/2023 - 25/4/2023 - - 18/11/2023 - 3/12/2023	1/1/2023 until 31/ 15/6/2023 - 27/7/2023 3 - 17/12/2023	12/2023 3 - 7/10/2023
		Run		Schedule Replace	ment for the period	1/1/2023 until 31/	/12/2023

the period 1/1/2023 until 31/12/2023 3 - 25/4/2023 - 15/6/2023 - 27/7/2023 - 7/10/2023 -

Life After MAP

Life After MAP

or the period 1/1/2023 until 31/12/2023

European Union European Regional Development Fund

Maintenance recomendations 1 year planning

MAPpy - Maintenance Actions Planning for PhotoVoltaic Systems

200 days old

Planning Configuration	New Comp	onent		
				ΜΔΟ
Start date for plann	ing	01/01/2023	+	
End date for planni	ng	31/12/2023	+	PV
Component Type		Inverter	•	
Component Life (in	days)	200		
Training Application	1	Low	-	
		Run		

Planning Configuration	New Comp	ponent		
Start date for plann	ing	01/01/2023	+	MAP
End date for planni	ng	31/12/2023	+ _	PV
Component Type		Inverter	•	
Component Life (in	days)	2000		
Training Application	1	Low	•	

MAPpv - MAintenance Actions Planning for Photovoltaic Systems - Results Report

Component Type	Component Life	Location	Life After MAP
Power Conditioning	200	15.15, 15.15	

Schedule Maintenance for the period 1/1/2023 until 31/12/2023

27/1/2023 - 25/2/2023 - 16/3/2023 - 10/4/2023 - 30/5/2023 - 10/7/2023 - 21/8/2023 - 5/9/2023 - 25/9/2023 - 6/10/2023 - 20/10/2023 - 3/11/2023 - 18/11/2023 - 3/12/2023 - 18/12/2023

Schedule Replacement for the period 1/1/2023 until 31/12/2023 None Preventive Actions

MAPpv - MAintenance Actions Planning for Photovoltaic Systems - Results Report

Component Type	Component Life	Location	Life After MAP
Power Conditioning	2000	15.15, 15.15	

Schedule Maintenance for the period 1/1/2023 until 31/12/2023

14/2/2023 - 10/3/2023 - 3/4/2023 - 24/4/2023 - 15/6/2023 - 26/7/2023 - 7/10/2023 - 20/10/2023 - 3/11/2023 - 18/11/2023 - 2/12/2023 - 17/12/2023

Comp Schedule Replacement for the period 1/1/2023 until 31/12/2023 1/1/2023 - 5/9/2023

uropean Union uropean Regional evelopment Fund

• INESC TEC

- Digital Twin of PV Inverters
 - Introduction
 - Definition
 - Simulation and validation
 - Fault classification
 - Conclusion
- Maintenance Policy Recommendations
- References

References

[1] V. S. B. Kurukuru, A. Haque, M. A. Khan, S. Sahoo, A. Malik, and F. Blaabjerg, "A Review on Artificial Intelligence Applications for Grid-Connected Solar Photovoltaic Systems," Energies, vol. 14, no. 15, p. 4690, Aug. 2021, doi: 10.3390/en14154690.

[2] M. Grieves, "Virtually intelligent product systems: Digital and physical twins," American Institute of Aeronautics and Astronautic. Complex Systems Engineering: Theory and Practice, pp. 175-200, 2019.

[3] Barbara Rita Barricelli, Elena Casiraghi, Daniela Fogli, "A Survey on Digital Twin: Definitions, Characteristics, Applications, and Design Implications," IEEE Access, no. 7, pp. 167653-167671, 2019.

[4] R. Isermann, Fault-Diagnosis Applications: Model-Based Condition Monitoring Actuators, Drives, Machinery, Plants, Sensors, and Fault-Tolerant Systems, 1st ed. Springer Publishing Company, Incorporated, 2011.

[5] A. E. Lazzaretti, C. H. d. Costa, M. P. Rodrigues, G. D. Yamada, G. Lexinoski, G. L. Moritz, E. Oroski, R. E. d. Goes, R.
 R. Linhares, P. C. Stadzisz, J. S. Omori, and R. B. d. Santos, "A monitoring system for online fault detection and classification in photovoltaic plants," Sensors, vol. 20, no. 17, 2020.

[6] G. D. Lorenzo, R. Araneo, M. Mitolo, A. Niccolai, and F. Grimaccia, "Review of O&M practices in pv plants: Failures, solutions, remote control, and monitoring tools," IEEE Journal of Photovoltaics, vol. 10, no. 4, pp. 914–926, 2020.
[7] P. Jain, J. Poon, J. P. Singh, C. Spanos, S. R. Sanders, and S. K. Panda, "A digital twin approach for fault diagnosis in distributed photovoltaic systems," IEEE Transactions on Power Electronics, vol. 35, no. 1, pp. 940–956, 2020.

Thanks for your attention!

Don't forget to ask your question in the chat...

AI to optimize PV cleaning schedule

- Christian Verrecchia (R&D Engineer)

AI to optimize PV cleaning schedule

Christian Verrecchia – R&D Engineer at EDP NEW

- Introducing EDP NEW
- AI4PV Cleaning module
- Results

Introducing EDP NEW

• AI4PV Cleaning module

• Results

EDP NEW, leading applied R&D in the energy sector

Working every day to invent the future of energy and contribute to a carbon-free society

Our Mission Design the energy future, today

Our Vision A strong purpose and the best team to lead energy R&D

Where we started

Small, lean, agile

Growing, widening, maturing...

Accelerating, delivering

Since 2015...creating a reputation in EU Energy R&D scene

R&D provides visibility for the future... and helps carve a leading path

Introducing EDP NEW

• AI4PV Cleaning module

• Results

AI4PV's cleaning module: a dive into a Markov Decision Process

An MDP is a mathematical framework used for modelling decision-making problems where the outcomes are partly random and partly controllable.

It can be defined as a tuple (S, A, T, R, γ) , where:

- S is a set of states,
- A is a set of actions,
- *T* is a transition function describing the probability of moving from one state to another after performing a certain action,
- *R* is a reward function assigning a scalar value to each state-action pair,
- **y** is a discount factor controlling the trade-off between immediate and future rewards.

AI4PV's cleaning module: States and Actions

The environment can be described as **Finite Horizon MDP** of length N simulating the whole lifetime of the PV park.

The **State** represent the level of the **Performance Ratio** (or **Soiling Rate**)

The Actions the agent can take is either to Clean (1) or Not To Clean the PV panels (0)

AI4PV's cleaning module: Transition probabilities

The dynamics of soiling loss are described by a **non-homogenous Markov chain** whose transition probabilities describe, for each time step, the likelihood of transitioning from one state to another, given a certain action.

These probabilities are **influenced by cleaning decisions** and two natural phenomena: **deposition of dust** on the panels **and rain events**.

In absence of cleaning, the transition probabilities can be written as:

$$p_k(SR_j|SR_i, a = 0) = p_R(t_k)p_{SR}(SR_j|SR_i, rain) + [1 - p_R(t_k)]p_{SR}(SR_j|SR_i, no rain)$$

In the case of cleaning, we assume a perfect cleaning that results in the SR being set to zero. The transition probabilities of the SR when the action is to clean are given by:

$$p_k(SR_j|SR_i, a = 1) = \begin{cases} 1 & SR_j = 0\\ 0 & SR_j \neq 0 \end{cases}$$

AI4PV's cleaning module: Transition probabilities - no cleaning terms (rain event)

 $p_R(t_k)$ It is the probability of rain in epoch k. Computed from historical weather data of the site at stake. A rain event is defined as such when the precipitation is above a certain threshold.

$p_{SR}(SR_j|SR_i, rain)$

Describes the cleaning effect of rain events. Computed on historical operational data of the PV park at stake.

AI4PV's cleaning module: Transition probabilities - no cleaning terms (no rain event)

 $p_{SR}(SR_j|SR_i, no rain)$

Describes the degradation of Performance ratio due to soiling.

Soiling was modelled using the **Gamma Process**, a commonly used distribution to describe degradation processes. The Gamma degradation process is characterized by a **shape parameter** (α), and a **scale parameter** (β), which determine the shape of the degradation curve and the rate at which the degradation occurs, respectively. **Average daily degradation was computed from historical data**.

$$f(x, \alpha, \beta, t) = \frac{\beta^{\alpha t} x^{\alpha t - 1} e^{-\beta x}}{\Gamma(\alpha t)}$$

AI4PV's cleaning module: Reward

The reward is what the agent receives when taking a certain action At at time t, under the current state St. In the case of not cleaning the PV panels, the reward depends only on the current PR and the revenue associated with that.

 $r_k(SR_i|SR_i, a = 0) = -Area_{cell} \cdot Efficiency \cdot SR_i \cdot N \cdot E(DNI(t_k), price(t_k)))$

To capture the interdependence between price and DNI, instead of sampling DNI and price separately, a set of hourly products of DNI and price, are described by the PD-day distribution, retrieved from historical values.

When cleaning the reward is:

$$r_k(SR_j|SR_i, a=1) = -cost_{cleaning}$$

AI4PV's cleaning module: Optimal policy

The aim of this tool is to find a cleaning policy that minimizes the total loss (which consider both the cost of maintenance (cleaning) and revenue losses due to soiling.

However, this cost is subject to a number of stochastic phenomena: soiling rates vary with weather conditions, rain occurrences are random with seasonally-varying statistical properties, and the effectiveness of cleaning operations (particularly rain) may not be deterministic. All these phenomena were modelled using the probabilities introduced before.

Thus, the objective function is:

$$\min_{\pi} \sum_{k=0}^{N} R_k(S_k^d, \mu_{k-1}(S_{k-1}^d))$$

where the cleaning policy is denoted as $\pi = (\mu_0, \mu_1, \dots, \mu_N)$ which is a sequence of actions the agent must take to minimize the revenue losses.

Introducing EDP NEW

- AI4PV Cleaning module
- Results

CBA AI4PV cleaning policy vs Traditional methods

We compared our method (not considering rain probabilities) against threshold-based (on the PR) cleaning policy for different values of cleaning costs and thresholds.

Revenue increase MDP-based policy vs different THR-based policies (no rain probabilities) for different cleaning costs

i.e. for a cleaning cost of $0.003 \in Wp$, the proposed method is:

- **7% more profitable** than the THR-based with **THR=0.7**;
- 2% more profitable than the THR-based with THR=0.75;
- 1% more profitable than the THR-based with THR=0.8;
- 1% more profitable than the THR-based with THR=0.85;

CBA AI4PV cleaning policy vs Traditional methods

We compared our method (considering rain probabilities) against threshold-based (on the PR) cleaning policy for different values of cleaning costs and thresholds.

Revenue increase MDP-based policy vs different THR-based policies (with rain probabilities) for different cleaning costs

i.e. for a cleaning cost of $0.003 \in Wp$, the proposed method is:

- 4% more profitable than the THR-based with THR=0.7;
- **4% more profitable** than the THR-based with THR=0.75;
- 2.5% more profitable than the THR-based with THR=0.8;
- 1% more profitable than the THR-based with THR=0.85;

CBA MDP-based cleaning

Considering rain probabilities into the model can bring additional revenues to plant owners, which from a minimum of 0.6% to a maximum of 1% depending on the cost of cleaning.

Revenue increase MDP-based policy with rain probabilities vs MDP-based policy without rain probabilities for different cleaning costs

Thanks for your attention!

Don't forget to ask your question in the chat...

