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EXECUTIVE SUMMARY 

This deliverable includes the main results obtained in task T4.3 Validation of results and Cost-

Benefit analysis. The work carried out in this task aimed at validating the models developed in WP2 

and WP3, integrated in Task 4.1 and tested in Task 4.2, with experimental data. 

The validation took place in the demonstration site, a real operating PV park, that offered real-world 

operational conditions. The demonstration plan, drafted in WP4 was used as baseline for the 

validation of the AI4PV solutions. Key Performance Indicators were computed, according to that plan, 

in order to evaluate the performance of the proposed tools. 
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GLOSSARY OF KEY TERMS 

Artificial Intelligence Artificial intelligence is a wide-ranging branch of computer science concerned with 

building smart machines capable of performing tasks that typically require human 

intelligence. 

Machine Learning 

 

Machine learning is a method of data analysis that automates analytical model 

building. It is a branch of artificial intelligence based on the idea that systems can 

learn from data, identify patterns and make decisions with minimal human 

intervention. 

Deep Learning Deep learning is a subset of machine learning, which is essentially a neural network 

with three or more layers. These neural networks attempt to simulate the 

behaviours of the human brain—albeit far from matching its ability—allowing it to 

“learn” from large amounts of data. 

Fault A fault is an unpermitted deviation of at least one characteristic property 

 (feature) of the system from the acceptable, usual standard condition. 

Failure 

 

Permanent interruption of a system’s ability to perform a required function under 

specified operating conditions. 

Malfunction 

 

Intermittent irregularity in fulfilment of a systems desired function. 

Fault detection 

 

Determination of faults present in a system and time of detection. 

 

Fault diagnosis Determination of kind, size, location and time of detection of a fault by evaluating 

symptoms. Follows fault detection. Includes fault detection, isolation and 

identification 
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1. INTRODUCTION 

This document, deliverable D4.3 Validation results and Cost-Benefit analysis report, includes the 

results of the validation of the AI4PV solutions developed in WP2 and WP3, integrated in Task 4.1 and 

tested in Task 4.2. 

 SCOPE OF REPORT 

D4.3 - Validation of Results and Cost-Benefit Analysis report presents the outcomes of a crucial 

task undertaken to assess the effectiveness and reliability of the solutions developed in WP2 and WP3. 

Task T4.1 integrated these models, which were subsequently tested in task T4.2 using experimental 

data. The primary objective of this validation process was to determine the degree to which the 

developed models accurately represented real-world scenarios and to evaluate the overall efficacy of 

the proposed solutions. 

In order to establish the reliability of the developed models, a comprehensive comparison was made 

between the numerical results obtained from simulations and the corresponding experimental data. 

By undertaking this rigorous analysis, we gained valuable insights into the performance of the models 

and identified areas that required fine-tuning to ensure their robustness. 

This report goes beyond model validation, as it also explores the practical implementation of the 

developed solutions at demonstration sites. These sites provided a unique opportunity to assess the 

real-world impact of each solution, offering a glimpse into their effectiveness under varying 

conditions. Furthermore, the report delves into a comprehensive cost-benefit analysis, examining the 

financial implications associated with the application of these solutions. 

Throughout this report, we present the validation results, which encompass an assessment of the 

solutions' effectiveness and reliability. Various key performance indicators (KPIs) defined in the 

demonstration plan are utilized to gauge the overall performance of the models. The subsequent 

cost-benefit analysis further validates the viability of the developed solutions, shedding light on their 

economic feasibility and long-term sustainability. 

 OUTLINE OF REPORT 

This report is structures as follows: 

 Chapter 1 introduces the scope of the report. 

 Chapter 2 provides an overview of the improvements made on the inverter fault detection and 

classification tool, compared to the one proposed in [1]. 

 Chapter 3 presents the results of the validation. KPIs and metrics defined in the demonstration 

plan are computed and compared to their targets. 

 Chapter 4 presents the Cost-Benefit Analysis performed to compare the AI4PV cleaning module 

against traditional practises. 

 Chapter 5 summarizes what is presented in this report. 
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2. IMPROVEMENT ON THE PV INVERTER FAULT CLASSIFICATION 

TOOLS 

In this chapter, the improvements on the PV inverter fault classification tools, introduced in [1], are 

described. 

The PV inverter fault classification is composed of multiple stages, starting with the raw data until the 

diagnosis is achieved. Such framework is described in this chapter. 

 OVERALL PIPELINE 

The PV inverter pipeline, i.e., the subsystem within the AI4PV solutions responsible for the fault and 

failures detection and diagnosis of the PV inverter is presented in Figure 2-1. 

 

FIGURE 2-1: PV INVERTER DIGITAL TWIN DATA PIPELINE 

  

The pipeline starts with the download of the dataset (which was first done for the whole data 

previously available from the PV power plant, later downloading data on a daily basis). Having the 

EDP’s dataset available (including weather and SCADA data), a rewriting of the data is carried out, 

doing a second verification regarding outliers, formatting, etc. Then the digital twin is fed the time 

series for fault validation (which was done during the previous work packages) and random fault 

scenario generation (the current state at the time of the validation), which results in the hybrid dataset 

(composed of real and synthetic data). 
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Besides the digital twin, the fault algorithms, i.e., classification, localization, and out-of-normality, do 

the analysis of the given dataset (day, month, year, etc.) and generate multiple outputs regarding the 

state of the inverter and some equipment connected to it (for instance, the junction boxes). Those 

various reports from the different algorithms are then summarized and formatted during the 

diagnosis, providing insightful information for the PV power plant operators. Lastly, the report is 

uploaded through the API once again (which is the same one used during the download). 

Most of the pipeline is developed using Python libraries, i.e., open-source solutions. However, due to 

the level of detail required for the implementation of the PV inverter itself, Simulink/MATLAB® is still 

applied, thus being the only licensed software needed for the pipeline's proper operation. MS Office 

Excel is depicted in the pipeline. Still, it was primarily used for visualization and storage, as all of the 

manipulations of the data were done using Python or MATLAB scripts. 

The following sections tackle the technicality of each stage of the pipeline, providing pseudo-codes, 

a draft, an explanation of the implementation of the solutions, etc. It is worth noting that even though 

this solution is tailored to the AI4PV validation site, the pipeline and its methodology can be applied 

to any PVPP, considering that another PVPP might have another configuration, power level, PV 

modules, inverter technology, etc. 

2.1.1 DEFINITIONS 

There are some key terms that are being applied to the digital twin of the PV inverter. Besides the 

term digital twin, some other definitions are essential for adequately developing tools such as the 

recommender system. The digital twin was first introduced by Michael Grieves [2], stating that it is a 

“Virtual representation of real-world entities and processes, synchronized at a specified frequency and 

fidelity”. Thus, besides having a real asset and a digital asset, there must be a data flow between them 

at a specified frequency. In the case of the AI4PV project, the real asset is the PV power plant and its 

multiple subsystems (PV modules, PV inverter, transformer, etc.). In that sense, beyond a regular 

simulation, the level of detail and the information trade between the real twin and the digital twin as 

critical features that will define the tool. 

Also, the definition was already tackled in [3] regarding fault and failure, detection and diagnosis, etc. 

But it is worth remembering that, in general, a fault is a problem that reduces a system's performance 

but doesn’t make it stop. On the other hand, a failure is such a dire problem that it will cause a system 

or a subsystem to have its working completely halt. For example, a degradation can be seen as a fault, 

whilst an open circuit issue can be seen as a failure. 

Lastly, the diagnosis is the outcome of a series of steps to diagnose a problem (fault or failure) 

properly. The first step is detection, where it will be pointed out if there is a fault, thus a species of 

binary classification. Nevertheless, the AI4PV project performs further, including fault classification 

and localization, thus providing an insightful report of the condition of the assets of the PV power 

plant, such as the PV inverter. 

Such performance shows that the AI4PV tools are not only on par with the start of the art but also 

pushing the boundaries of this technology by providing diagnosis to multiple assets of the PV power 
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plant, mainly the ones related to electrical power engineering, i.e., PV modules, power electronics, 

power transformers, etc. 

2.1.2 DATA FLOW 

The data flow of the PV inverter, or the pipeline for the fault and failure detection and diagnosis of the 

PV inverter, follows a logical approach that combines data analytics methodologies, power 

electronics simulation and machine learning models. 

Having prior knowledge of the PV power plant assets and the dataset formatting, it is possible to 

develop a pattern that will permeate the whole pipeline. Of course, as the digital twin solutions are 

tailored to a specific asset, creating a pipeline for another PV power plant is possible, and it can use 

the same pipeline. However, the details of each building block of the pipeline can be different. For 

instance, the digital twin of the PV inverter takes into consideration the technical specifications of the 

power electronics converter, or the machine learning models take into consideration the 

configuration of the PV power plant to provide a proper fault classification, etc. 

The data flow starts with the download of the real data (daily, monthly, yearly, etc.) through an API 

developed by Isotrol, which retrieves the data from EDP’s SCADA system. After the download, which 

can include weather, inverter, string box, transformer data, etc., a rewrite building block takes place. 

This block performs some simple data cleaning, which at the validation stage is redundant as the data 

being provided is already clean. Still, it was necessary during the first stages of developing the digital 

twin of the PV inverter. 

The digital twin uses the time-series real data to perform multiple functions, such as model validation 

using fault-free data, exploring future configuration scenarios, or generating faulty data, i.e., 

simulated data of multiple conditions that the PV inverter is susceptible to (such as switches faults, 

DC cable disconnection, short-circuits, etc.). The outcome is a hybrid dataset, whereas the real data 

can be combined with the synthetic data to generate the hybrid dataset. Also, under the hybrid 

dataset, some pre-processing is done by adding some weather/climate-related features that will 

improve the performance of the classification and localization algorithms. 

The developed algorithms perform the classification (consequently, detection) through a REST API, 

followed by localization. In that way, besides pointing out if there is a problem, it can indicate the type 

of the fault and in which equipment it occurred (string box, inverter, etc.). Lastly, all of the pipeline 

outcomes depicted in Figure 2-1 are summarized in the diagnosis building block, performing the 

integration of the whole system and formatting the output to a time-series pattern achieved in 

agreement with the project's other partners. After that, the report is uploaded back to the PV power 

plant operators. 

 THE AVAILABLE DATA AND INFORMATION FROM THE PV INVERTER 

To build a digital twin of a given asset, it is necessary to have information about its technical 

specifications (i.e., electrical ratings), the configuration (i.e., how the PV modules, junction boxes, PV 

inverter and transformer are connected), and input data (i.e., electrical and weather data). 
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It is worth noting that the more detailed information and data with high granularity, the more precise 

the digital twin will be. However, it is necessary to make a trade-off between the available data and 

how detailed the digital twin needs to be. If a certain level of detail is enough, a discretization of the 

available data can occur, or using generalized/classical models for some subsystems might be a better 

approach. 

2.2.1 PV MODULES, PV INVERTER, AND CONFIGURATION 

The PV modules datasheet provides the information needed to use an existing PV module model, 

such as the ones supplied by Simulink/MATLAB® or to build your mathematical model using a single-

diode or two-diode model [4]. This model must be carefully developed, as it is responsible for the 

power source of the PV inverter digital twin. Thus, properly validating the model by comparing it with 

real data is advised. If one is using real irradiance and temperature data as input, fine-tuning might be 

required if the calibration state of the sensor is still being determined. Of course, it is not expected 

that the error between the real and simulated data to be zero, but a KPI must be indicated before 

moving on to the validation of the PV modules (or the validation of any subsystem, actually) [5]. 

The PV inverter datasheet provides valuable information to build the digital twin like the PV modules. 

Minimum and maximum current and voltage ratings, nominal values, power ratings, etc., will define 

the operating conditions of the PV inverter. Suppose details about the reactive components 

(capacitors, inductors) and control (MPPT, PLLs, current control, etc.) are available. In that case, they 

can be added or implemented on the simulation platform, but this is only sometimes the case. Having 

at least the datasheet information should be enough, though, since in the case of lacking details about 

the hardware and firmware of the PV inverter, a generalized/classical approach can be taken: applying 

classical current control and MPPT, using solid references for the design of capacitors and inductors, 

etc. After all, a validation of the model is still necessary. In that case, usually, the current will have a 

smaller error when compared to the real fault-free data, whilst voltages (mainly the DC-link voltage 

and output of the MPPT control) will present a larger error. 

Lastly, the configuration of the PV power plant as a whole, or at least of the electrical equipment 

directly connected to the PV inverter, must be provided. The reason is that there are multiple 

configurations of PV systems that can take place (central inverter, microinverters, etc.), and such 

configuration will impact the current, voltage and power levels in the multiple nodes and connections 

of the PV power plant. Besides that, the configuration has a crucial role when implementing the fault 

and failure detection and diagnosis algorithms, as it is necessary to understand the behaviour of the 

real asset to develop proper machine learning solutions. 

2.2.2 WEATHER AND SCADA DATA 

Besides the technical specifications of the PV modules, PV inverter and PV power plant configuration, 

it is essential to have access to SCADA and weather data of the PV power plant. This is necessary to 

do a proper simulation using real data as input, such as irradiance, temperatures, voltages, etc., and 

to validate the model by comparing the output generated by the simulation with the real data. If a 

specific KPI error is achieved, the model is considered reasonable. 
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The weather data provides information about irradiance, temperature, humidity, etc. Still, the most 

important ones are the irradiance and ambient temperature, as they are the input for any PV 

cell/module model. If there are multiple irradiance and temperature sensors spread around the PV 

power plant, they can be used as input to the PV modules closest to them. Otherwise, a “general” 

irradiance and temperature profile can be applied to the model without compromising the results. 

The SCADA data provides information about electrical measurements, such as currents, voltages and 

powers. Still, it can also provide information about the power factor, frequency, efficiency, and PV 

inverter operating state (power level reference, reactive control input, etc.). All of this data can be 

used to validate the model. Thus, it is interesting to have which of these data are being adequately 

considered in the simulation to compare later with the real data. 

Nevertheless, it can be noticed that besides having the technical information about the PV power 

plant assets, the data have a fundamental role during the simulation and validation, as it is being used 

as input and output features of the digital twin. Access to this type of data is necessary to validate the 

digital twin. Thus, even the fault-free operating condition would not be reliable. 

2.2.3 DATASET CHARACTERIZATION 

The use of different types of variables (VarType) for each measurement group (MeasID) is the cause 

for their characterization through the creation of two dictionaries (Table 2-1 e Table 2-2), as it will 

contribute to a better understatement and study of the dataset available. 

TABLE 2-1: MEASURES CHARACTERIZATION 

Parameter Description 

MeasID Measurement Tag 

MeasDescp Measurement Description 

VarType Dictionary of VarTypes 

Vmin Minimum value, in per unit   

Vmax Maximum value, in per unit   

IQR, threshold Interquartile Range, in per unit   

Vnorm Base value in SI 

 

TABLE 2-2: VARIABLES CHARACTERIZATION 

Parameter Description 

VarName Name of the variable 

Datatype Type of dataset (“meteo”: weather data; “inv”:  electrical data) 

VarType Variable Type [1] 

TransfID Transformer Number 

InvID Inverter Number 
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JbID Junction Box Number 

StrgID String Number 

SensID Sensor Number 

Units Variable Units in SI 

VarDescp Variable Description 

MeasID List of Measurement Tags 

State If State == 1 and MeasID != None, the variable is used to find IQR’s value 

Vnorm 

Base value in SI. For mode and control variables, such as Reactive Power 

Control Mode, the normalisation operation isn’t applied. In consequence, 

[Vnorm, Vmin, Vmax] = [0, 0, 0]. Additionally, if normalization isn’t considered as 

input, Vnorm, Vmin and Vmax are set with default values. 

Vmin Minimium value, in per unit   

Vmax Maximum value, in per unit   

MachineID 

Specific equipment associated to the variable: 

• TRANSF_A: Transformer A 

• INV_A.B: Inverter B of TRANSF A   

• JB_A.B.C: Junction Box C of INV A.B   

• STRG_A.B.C.D: String D of JB A.B.C  

• [VarType]_A.B.C.D.E: Sensor E of type [VarType] 

 PER UNIT SYSTEM 

As it was reported on [1], the per-unit system (or pu system) consists of electrical quantities 

normalisation (e.g., voltage, current, power, etc.) based on predetermined values. For a given 

quantity (V), the per-unit value (Vnorm) is the value related to a base quantity (Vb) by the expression 

Vnorm = V/Vb [6]. In the current section, a brief features normalization update is shown in Table 2-3. 

TABLE 2-3: PARAMETERS OF PER-UNIT NORMALISATION 

VarType Vnorm  Vmin (pu) Vmax (pu) 

AVL, PMAXmod, QCTRmod, QCTRref, QQUADsp, 

PMAXsp, WindDir 
0 0 o 

EF, FPsp 100% 0.0 1.0 

ENGDay 4000 kWh 0.0 1.5 

ENGTot 1116 kWh 0.0 100.0 

Fac 50 Hz 0.99 1.01 

Fpac 1 -1.0 1.0 

Iac 1310 A 0.0 1.1 

IdcI, IdcJB, IdcS 1300 A 0.0 1.1 
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Irrad 7 kWh/m2 0.0 1.5 

Pac, PMAXsp 630 Kw 0.0 1.1 

PdcI, PdcJB, PdcS 725 kW 0.0 1.1 

Qac 630 kvar 0.0 1.1 

RadDir, RadDirAv 1000 W/m2 0.0 1.1 

RadMod, RadH, RadPl, RadPlAv 1000 W/m2 0.0 1.1 

Sac 630 kVA 0.0 1.1 

TempMod, TempModAv 25 ºC -0.1 3.0 

TempInt 25ºC -0.1 2.0 

Vdc 1000 V 0.48 1.0 

Vac 315 V 0.9 1.1 

WindS 10 m/s 0.0 3.0 

 

 DIGITAL TWIN 

The PV inverter digital twin is revisited, since the model presented in [5] has been updated during the 

validation phase of the project. The main modifications are: [5] 

• the addition of more junction boxes, now precisely matching the number present in the real 

asset, thus allowing for a proper analysis of the faults on the DC side of the PV inverter; 

• the addition of the transformer to the simulation, which now replaces an ideal grid. This 

results in more AC-link voltage fluctuations, which is an expected behaviour once it is within 

the proper limitation values; 

• the addition of three more faulty conditions, following the previous implementation based on 

some of the most common faults and failures of the PV power plant; 

• and the randomly generated conditions, whereas now it is possible to apply predetermined 

faults or fully randomly generated scenarios. 

2.4.1 SIMULINK MODEL 

The first versions of the PV power plant centred around the PV inverter used a simplified version of 

the original configuration. Even though the power and voltages rating were the same, the DC current 

level distribution across the junction boxes was not. In the latest version, it is possible to measure each 

junction box's current, allowing fault classification and localization of those assets as well. 

Besides that, adding the transformer to the PV inverter simulations adds some key interactions that 

can improve the analysis of the AC side of the inverter. The outcome of the digital twin of the 

transformer [5] is imported to the PV inverter simulation, approaching the virtual representation of 
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the real PV power plant. This integration, for instance, allows for evaluation in the future of the 

interactions between the two inverters through the transformer under a severe fault on their AC side. 

2.4.2 FAULTS AND FAILURES IMPLEMENTATION 

Whilst the first versions of the PV inverter digital twin had one fault-free condition and four more 

faulty conditions, the latest version added three more faults. The complete list of the implemented 

faults can be found in Table 2-4. 

TABLE 2-4: PV INVERTER IMPLEMENTED FAULTS AND FAILURES 

Fault number Fault acronym Description 

00 noFault Regular operation, used for model validation 

01 dcCabDeg A series resistance in the cables of a given junction box 

02 dcCabOC An sudden open circuit in the cables of a given junction box 

03 switchDeg An increased on resistance in a given switch of the inverter 

04 switchOC An open circuit in a given switch of the inverter 

05 
dcCabSC A short circuit between positive and negative poles of a given 

junction box 

06 
phphSC A short circuit between phases on the point of common 

coupling of the PV inverter 

07 MPPT A saturation of the output of the MPPT algorithm 

All of those faults and failures will have a direct impact on the operation of the inverter; thus, the 

electrical measurements will present a pattern that allows the ML algorithms to classify those 

problems, followed by the localization algorithms to the point where the fault happened. For 

exemplification, all of those conditions are simulated and displayed in Figure 2-2 for DC-link current, 

DC-link voltage, and AC power. 

 

(A) 
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(B) 

 

(C) 

FIGURE 2-2: SIMULATION RESULTS FOR THE PV INVERTER: (A) DC-LINK CURRENT; (B) DC-LINK 

VOLTAGE; AND (C) AC ACTIVE POWER 

As shown in Figure 2-2, some conditions are easily distinguishable from the others in the DC-link 

current, the DC-link voltage, etc. However, others are not easily detectable, even using those three 

measurements. Thus, multiple measurements of the PV inverter are considered for fault classification 

at the end of the day. Measurements such as frequency, power factor, AC currents and voltages, etc., 

are all turned into features to be fed to the ML models so they can do the pattern recognition, thus 

classifying the faults. 

Besides that, trying to achieve a behaviour more like a real PV inverter, some functions for randomly 

generated scenarios were added. It is worth remembering that a digital twin is a powerful tool for 

benchmarking and exploring different scenarios of the asset. In that sense, other than the 

deterministic fault and failure events, it is possible to generate the scenarios randomly. The 

randomness can be related to the fault of the day, fault starting time, etc., and they are listed in Table 

2-5. 
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TABLE 2-5: PV INVERTER RANDOM SCENARIOS GENERATION FUNCTIONS 

Random scenario function Description 

Inverter under fault 
For a set of inverter parallel-connected to a power transformer, it is possible 

that the fault will occur in one of them 

Fault of the day 
From the faults pool, it is possible that one of them will happen (or no fault 

will happen at all) 

Starting time of the fault A fault can start anywhere between 05 AM and 09 pM 

Fault location 
The location of the fault, i.e., junction box, AC phases, switch of the inverter, 

etc., is randomly selected 

Degradation evolution 

A degradation usually spams accros multiple days, weeks or months, 

evolving from a harmless output power reduction until a failure like a 

subsystem disconnection 

In that sense, the digital twin can achieve randomly generated scenarios. Of course, if it is needed, it 

is still possible to specify which scenarios are wanted to be simulated. However, from a training 

dataset point of view, having those randomly generated scenarios can place the machine learning 

models under unexpected conditions, thus stressing and validating its capability of 

predicting/classifying faults and failures. 

For instance, in Figure 2-3, it can be seen that around 07 AM, an open circuit fault happens in the DC 

cable of a given junction box. As for this example, the fault only happens on one of the inverters; the 

AC power of the second inverter (plot on the right) is unaffected, whilst the AC power of the first 

inverter (plot on the left) is significantly reduced. Also, it is worth noting that the gap between the 

fault-free and the faulty condition is more discernible during periods of higher irradiance levels; in 

Figure 2-3, this happens around noon. Similarly, an MPPT fault is depicted in Figure 2-4, whereas the 

output power reduction can be clearly seen on the left plot. 

 

FIGURE 2-3: AN OPEN CIRCUIT FAULTS HAPPENING ON THE FIRST INVERTER AROUND 07 AM OF A 

GIVEN DAY 
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FIGURE 2-4: A MPPT CIRCUIT FAULTS HAPPENING ON THE FIRST INVERTER AROUND 10 AM OF A 

GIVEN DAY 

Those results show that the digital twin platform is very flexible, allowing the exploration of multiple 

future or faulty scenarios. Such a platform can be expanded to accommodate weather-related faults, 

threshold-triggered faults, etc. Thus, if a correlation between a specific event and a fault can find out, 

it can be replicated in the digital twin (such as the fuse tripping during spring days [7]). 

 HYBRID DATASET 

The fault classification requires the implementation of a hybrid dataset. This dataset is composed of 

real and synthetic data for fault-free and faulty conditions (without noise), respectively. Thus, after 

validating the fault-free data, a digital twin (DT) was implemented in Simulink/MATLAB® to generate 

a faulty dataset (due to the lack of real faulty data), including random daily parameters (fault’s start 

time, fault type, and fault’s location).  

2.5.1 TIMESERIES DATASET 

To reduce the processing time and remove any redundancy that could compromise the model’s 

performance, reducing the total number of features from the hybrid dataset was necessary. More 

details about those first implementations can be found in [1]. 

2.5.1.1 FEATURE ENGINEERING 

As it was implemented in [1], to improve the accuracy of the ML algorithms, some additional features 

were included to add some contextualization to the data. Most of the new features are weather-

related, as the weather will dictate the operating conditions of the PV inverter. 

2.5.1.2 SKY’S TYPE 

The clear’s sky classification for each timestamp was based on the hourly estimation implemented in 

[1], with time-wise interpolation [8] [8] and by filling missing values with ‘0’ [9]. Two variable types 

were considered for the classification of two inverters: PV Modules Irradiance (RadMod) and Plane 

Irradiance (RadPl). The pyranometer PYR1.1.1_R was excluded due to its measurement errors. In 
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Figure 2-5 and Figure 2-6, are represented some examples of the sky’s type classifications for the year 

2020. 

  

                                             (A)                                                                                  (B) 

FIGURE 2-5: CLASSIFICATION OF SKY FOR: (A) 2020-03-20; AND (B) 2020-06-20 

 

                                             (A)                                                                                 (B) 

FIGURE 2-6: CLASSIFICATION OF SKY FOR: (A) 2020-09-22; AND (B) 2020-12-21 

2.5.1.3 WEATHER AND SCADA VARIABLES 

For the current deliverable, the digital twin comprises two inverters connected by the same 

transformer (INV_1.1 and INV_1.2). Which inverter is composed of eight junction boxes (JB_1.X.1 - 

JB_1.X.8). Additionally, the reduction of the total variable number from 1224 to 85 was made by the 

following steps: 

• Considering only the Ambient Temperature, the Plane Irradiance (Sensor 1 and Sensor 2), and 

PV Modules Irradiances. 

• Including electrical variables from the inverter side. Exceptions: All set-point and control 

features; Availability; Internal Temperature; Daily Energy Produced; Total Energy Produced; 

Apparent Power and Power Factor. 
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• Add DC Voltage and DC Current variables from the junction boxes. 

On Table 2-6 is described the groups of features used. 

TABLE 2-6: GROUPS OF FEATURES 

Group of Features Description 

‘weather’ 

All features related to the weather station (WS_[X]), and to the 

pyranometers (containing ‘PYR’) 

Note1: Average Module Temperature included. 

Note2: Exclusion of the variables associated with the Plane Irradiance used 

on the clear sky’s estimation. 

‘junctionBox’ 
All features related to the junction boxes connected to the classified 

inverter (JB_[X]) 

‘inverter’ All features related to the classified inverter (INV_[X]) 

‘skytype’ Sky’s type features 

‘calendar’ 
All features associated to date, daytime, sunrise, and sunset. 

Note: Exclusion of 'date', 'year', 'day', 'minute' 

‘statistical' 
Mean and standard deviation of measurements related to pyranometers 

and junction boxes. 

 HYPERPARAMETERS TUNING 

The Bayesian Optimization is a sequential design strategy for the global optimization of black-box 

functions [10] [11], based on the Bayes Theorem [12], and shown in Equation 2-1. 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 

EQUATION 2-1 

 

Where: 

• P(A|B): The probability of event A occurring given that B is true. It is also called the 

posterior probability. 

• P(B|A): The probability of event B occurring given that A is true. It is also called the 

likelihood probability. 

• P(A) and P(B): The probabilities of observing A and B, also known as the prior probability 

and marginal probability. 

In contrast to the most common methods for hyper-parameter tuning, Grid Search and Random 

Search, it uses the results from the previous iteration to decide the next hyper-parameter value 

candidates. Additionally, Bayesian Optimization was implemented with the function BayesSearchCV 

of the Scikit-Learn/Python library [10], which includes the cross-validation of the training dataset. 

Initially, a wider parameter range was used for optimization on 150 iterations. With the borders of 

search reduced, 50 iterations were made to determine the estimator with the most accurate 

predictions. 
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 ALGORITHMS FOR DIAGNOSIS 

Fault Diagnosis is defined by the determination of kind -or, fault classification-, size, location -also 

known as fault localization- and time of detection of a fault by evaluating symptoms [13]. A prior out 

of normality analysis will be implemented to identify any possible incorrect measurements, which 

could compromise the fault diagnosis performance, or some variables redundancy. 

2.7.1 OUT OF NORMALITY ANALYSIS 

The interquartile range (IQR) has been used to obtain the mean value of each group of measurements 

(MeasID), and for out of normality detection of PV Modules Temperature, Global Irradiance, and 

Direct Irradiance. As it was noted in [1], the average measurements of temperature and irradiance 

weren't considered in the mean value estimation because of measurement errors. Moreover, in the 

case of PV module temperature, it was necessary to disregard the ambient temperature due to its 

reduced daily deviation. 

Initially, the out of normality detection was implemented as an IQR function for each timestamp. If 

the IQR’s value is above or equal to a threshold, the outlier detection is defined as 1– otherwise, 0. 

Subsequently, three criteria were evaluated to identify the possible measurements for each MeasID: 

• Criterion 1: Min(|Yi-MeasIDMin|, |Yi-MeasIDMax| ). 

• Criterion 2: Max (|
Yi-Yi-1

∆t
|) , ∆t=15min. 

• Criterion 3: Max(|Yi-MeasIDMean|). 

The out of normality identification is determined by the maximum number of criteria equal to ‘True’. 

Any variable identified will be excluded from the calculation of the average value. Furthermore, the 

final mean value will be constrained between the minimum value Vmin and the maximum value Vmax 

[14]. Table 2-7 describes the parameters for each MeasID. 

TABLE 2-7: OUT OF NORMALITY PARAMETERS 

MeasID Definition VarType [Vnorm, Vmin, Vmax] Threshold Group By 

pyrGlobalPV Global Irradiance 
RadPl, 

RadMod 
[1000; 0; 1100] W/m2 0.06 p.u. Inverter 

PyrDirPV 
Direct Irradiance 

 
RadDir [1000; 0; 1100] W/m2 0.16 p.u. None 

tempModsPV 
PV Modules 

Temperature 
TempMod [25.0; -0.1; 3.0] ºC 0.20 p.u. Transformer 

In Figure 2-7-Figure 2-9 are presented some examples of the mean value estimation. 
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FIGURE 2-7: DIRECT IRRADIANCE FOR 30-06-20202 (VNORM = 1000 W/M2) 

 

FIGURE 2-8: PV MODULES TEMPERATURE OF TRANSF_1 FOR 01-11-2020 (VNORM = 25ºC) 
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FIGURE 2-9: GLOBAL IRRADIANCE OF INV_1.1 FOR 01-10-2018 (VNORM = 1000 W/M2) 

2.7.2 FAULT CLASSIFICATION USING ML MODELS 

The Light Gradient-Boosting Machine (LightGBM) algorithm already approached in [1], was tested 

with the dataset between 2022-04 and 2023-05 -with a total number of samples equal to 21840- 

resulting in Fault Detection Accuracy (FDA) of 93.6% for INV_1.1 and 93.8% for INV_1.2. The previous 

values meet its minimum requirement of 80%. During the feature selection stage, the best sets of 

features were defined for both inverters, namely: 

• ‘weather’, ‘inverter’, ‘calendar’ and ' statistical' for INV_1.1. 

• ‘inverter’, ‘calendar’ and ' statistical' for INV_1.2. 

As shown in Figure 2-10, the current model presents difficulty distinguishing the fault-free condition 

from DC cable degradation and the switch degradation from fault-free. The previous results were 

observed, mainly in the day beginning (5h00 -7h30) and end (17h00-21h00).  
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(A) 

 

(B) 

FIGURE 2-10: CONFUSION MATRIX FOR FAULT CLASSIFICATION USING THE LIGHTGBM CLASSIFIER 

WITH DIFFERENT INVERTERS: (A) INV_1.1; AND INV_1.2 

As last, initially, the explainability of the model was tested through the Shapley values [15]. However, 

it was time-consuming (about 1 hour per iteration), leading to the removal of the Explainable Artificial 

Intelligence (XAI) Techniques as part of the current pipeline. 

2.7.3 FAULT LOCALIZATION BASED ON BENCHMARKING 

The fault localization defines the physical fault’s location in the function of the prior classification. 

Additionally, in [16], fault detection and classification are implemented by evaluating an error residual 

vector, which is defined as the difference between the digital twin reference estimation – with solar 

irradiance (G) and Module Temperature (T) as inputs - and the measured outputs. Consequently, the 
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methodology implemented in the fault localization is determined by four main steps (from Equation 

2-2 to Equation 2-5), namely: 

1. Fault Detection 

𝐹𝑎𝑢𝑙𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛(𝑡) = {
0,   𝐹𝑎𝑢𝑙𝑡 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =  ′𝑛𝑜𝐹𝑎𝑢𝑙𝑡′

1,   𝑜𝑡ℎ𝑒𝑟𝑠
 EQUATION 2-2 

2. Error Residual 

∆𝑌𝑖(𝑡𝑗) =  𝑌𝑖,𝐹𝑎𝑢𝑙𝑡(𝑡𝑗) −  𝑌𝑖,𝑛𝑜𝐹𝑎𝑢𝑙𝑡(𝑡𝑗) 
EQUATION 2-3 

Where: 

• ∆Yi (tj): Error residual of variable i, on timestamp j. 

• Yi, Fault (tj): Value of variable i from the Timeseries dataset, on timestamp j.  

• Yi, noFault (tj):  Value of variable i from Rewrite dataset, on timestamp j. 

 

3. Cumulative Average 

𝐶𝐴(𝑡𝑖,𝑗) =
1

𝑁 + 1
∑ ∆𝑌𝑖(𝑡𝑗),  ∆𝑌𝑖(𝑡0) = 0 

𝑁

𝑗=0

 
EQUATION 2-4 

Where: 

• i: Variable.  

• j: Timestamp. 

• N: Number of samples between the fault’s start and the timestamp j, if Fault 

Detection (tj) = 1 and tj ≤ fault’s end. 

 

4. Fault Localization 

𝐹𝑎𝑢𝑙𝑡 𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (𝑡𝑗)  =  𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝐼𝐷 𝑤ℎ𝑒𝑟𝑒 𝑀𝐴𝑋[|𝐶𝐴(𝑡𝑖,𝑗) − 𝐶𝐴̅̅ ̅̅ (𝑡𝑗)|] 
EQUATION 2-5 

Where: 

• CA (ti,j): Cumulative average for each variable, on timestamp j.  

• CA̅̅ ̅̅  (tj): Mean value of all cumulative averages for every variable considered, on 

timestamp j.  

• MachineID: Inverters and Junction boxes. Default: ‘noFault’ 

In Table 2-8 are described the parameters for each fault localization. 
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TABLE 2-8: FAULT LOCALIZATION PARAMETERS 

Fault Classification VarType Possible Localization (s) 

noFault - ‘noFault’ 

dcCabDeg 

IDC, JB(Inverter) Junction Boxes dcCabOC 

dcCabSC 

switchDeg 

switchOC 
IDC,I Inverters 

phphSC 
PAC 

 
Inverters 

MPPT PDC,I Inverters 

Although the Timeseries Dataset included eighteen possible localizations (two inverters and eight 

junction boxes per inverter), each inverter was classified independently. Thus, it was only possible to 

compare different locations for the ‘dcCabDeg,’ ‘dcCabOC,’ and ‘dcCabSC.’ From Figure 2-11 to Figure 

2-13 are presented some examples of fault localization for the previous classifications. 

 

FIGURE 2-11: FAULT LOCALIZATION FOR DCCABDEG IN INV_1.1 (21-04-2018) 
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FIGURE 2-12: FAULT LOCALIZATION FOR DCCABOC IN INV_1.1 (22-04-2018) 

 

FIGURE 2-13: FAULT LOCALIZATION FOR DCCABSC IN INV_1.1 (17-08-2019) 

Finally, the dataset between 2022-04 and 2023-05 presented a Fault Localization Accuracy (FLA) of 

79.9% for INV_1.1 and 78.2% for INV_1.2. 

 DIAGNOSIS OR PIPELINE INTEGRATION 

Lastly, after all of the described tools related to the PV inverter digital twin are operational, it is still 

necessary to summarize and format them to properly communicate with the PVP O&M staff. Thus, 

the last building block of the pipeline presented in Figure 2-1 is developed. To do so, it is necessary to 

close communication and cooperation with the PVPP owners and operators, i.e., a digital twin 

solution must have to account not only for the power electronics and electrical engineering aspects 

of the real asset but also for the “logistics” of the data flow from and to the real asset. 

Depending on the needs of the other subsystems of the PVPP or the O&M staff itself, three stages 
of diagnosis can be achieved: 
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1. Fault detection: the algorithms inform whether there is a fault, thus a binary 
classification. Even though this can be useful for maintenance planning, it has yet to 
provide further details about the state of the PVPP. 

2. Fault classification: the algorithms can, beyond detection, classify the fault based on a 
predetermined list since the ML solutions developed for this project are all based on 
supervised learning. 

3. Fault localization: In one of the diagnosis's final stages, the algorithms can pinpoint 
where the fault happened. Of course, the level of detail of the localization relies on the 
level of detail achievable by the available dataset. Nevertheless, pointing out the 
equipment under fault (a specific junction box, an inverter, etc.) is usually reasonable 
enough. 

It is also possible to record a fault's start and end, as some of them can be intermittent. The indication 

of the starting, end and period of a fault can help do a root cause analysis of the problem, trying to 

find a correlation between an event and the fault (for instance, a problem that is occurring only during 

rain periods or during a season of the year, etc.). 

At last, the report can be assembled by combining the date and time (or time stamp as an alternative), 

detection, classification, and localization. Depending on the number of elements or subsystems on a 

PVPP, it can be interesting to aggregate the results by equipment or element. An example of a digital 

twin report is presented in Table 2-9. 

TABLE 2-9: DIAGNOSIS REPORT TEMPLATE 

Report 
entry 

Time stamp 
Date and 

time 
Equipment Detection Classification Localization 

Description 

An unit of 

tame based 

on a starting 

epoch, 

which varies 

from 

different 

systems. It 

can be 

counted in 

seconds, 

miliseconds, 

minutes, etc. 

A 

combination 

of a given 

data and its 

multiple 

times during 

the day. It 

can include 

the 

timezone 

too. Similar 

to the 

timestamp, 

is dependent 

on the 

granularity 

of the 

system, 

which can be 

sceonds, 

minutes or 

even hours. 

A tag that 

can easily 

indentfy the 

equipment 

under 

analysis 

The first 

stage of 

the 

diagnosis, 

rapdily 

indentifyin

g if there is 

a fault or 

not 

The second 

stage of the 

diagnosis, 

now 

indenteifying 

if the fault is 

within a list of 

trained 

possible 

conditions 

The third 

stage of the 

diagnosis, 

based on the 

classification

, pinpointing 

the possible 

physical 

location of 

the fault 
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Example 
1655812800

000 ms 

21-06-2022  

12:00:00 

INV 1.1, INV 

2.2, etc. 
0 or 1 

noFault, 

switch OC, 

etc., accorind 

to Table X.Y 

JB 2.1.7, INV 

1.2, etc., 

depending 

on the 

configuratio

n of the 

PVPP 
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3. VALIDATION RESULTS 

In this section, the validation results are reported. In order to evaluate the effectiveness of the 

solutions developed, the KPIs defined in D4.2 are used as acceptance criteria. Wherever the results 

obtained by the validation of a certain solution match the KPIs, the solution is deemed as valid. 

The validation phase started on April 1st 2022 and ended in June 20th 2023. During this timeframe, the 

operational data of the validation site were collected and analysed by the AI4PV tools. Faults, failure 

and underperformance were identified by the AI4PV solutions and recommendation actions were 

generated. 

 KPI1: RMSE EMPIRICAL AND REPRODUCED I-V CURVE 

This KPI represents the difference between the empirical I-V curve provided in the datasheet of the 

PV module and the reproduced curve through the DT modelling. Both curves, the one from the 

datasheet and the one produced by the DT, are reported in Figure 3-1 for different levels of irradiance. 

 

FIGURE 3-1: REPRODUCED AND EMPIRICAL I-V CURVES 

To evaluate the effectiveness of the proposed DT, the RMSE between the empirical and the 

reproduced I-V curve is evaluated. The RMSE is calculated as per Equation 3-1. 

𝑅𝑀𝑆𝐸 =
√1

𝑁
∑ (𝐼 − 𝐼𝑖)2𝑁

𝑖=1

𝐼𝑠𝑐
 

EQUATION 3-1 

Where: 

• 𝐼𝑖, 𝐼𝑖 are the real and modelled output current of the PV module. 

• 𝑁 is the number of samples of the empirical I-V curve 

• 𝐼𝑠𝑐 it’s the short circuit current of the PV module 
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The RMSE value stands at 0.18, much lower than its target value (0.6). 

 KPI2: REDUCE SOILING LOSSES (RSL) 

This KPI represents the ratio between the energy of the soiled PV panel and the cleaned one. The 

higher it is, the more cleaned the PV is for a long period of time. It considers losses due to both dust 

or organic soiling. This KPI is evaluated considering the actual energy produced by the PV farm, during 

the validation timeframe (from April 2022 to June 2023). This KPI is computed using Equation 3-2. 

𝑅𝑆𝐿 =
∫ 𝑃𝑃𝑉_𝑠𝑜𝑖𝑙𝑒𝑑𝑑𝑡

𝑇

0

∫ 𝑃𝑃𝑉_𝑐𝑙𝑒𝑎𝑛𝑒𝑑
𝑇

0
𝑑𝑡

 EQUATION 3-2 

Where: 

• 𝑃𝑃𝑉_𝑠𝑜𝑖𝑙𝑒𝑑, represents the output power of the soiled module, thus it is the real output power 

of the PV park; 

•  𝑃𝑃𝑉_𝑐𝑙𝑒𝑎𝑛𝑒𝑑, represents the ideal power output wherever the PV panels were always perfectly 

clean, thus when the performance ratio it is at its maximum value; 

• 𝑇 is the observation time, thus the whole validation frame. 

For confidentiality reasons, the amount of energy produced within the validation timeframe can not 

be disclosed. Nevertheless, it can be said that the average Performance Ratio (PR), as a result of the 

AI4PV policies stands at 82%. Having said that, comparing this value with the theoretical one (which 

is ideally, as it considers the PV panels being always cleaned and thus it is not economically viable as 

it would require huge CAPEX), the RSL can be calculated as per Equation 3-3. 

𝑅𝑆𝐿 =
𝑃𝑅𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝑃𝑅𝑖𝑑𝑒𝑎𝑙
= 0.83 EQUATION 3-3 

It can be noticed that this value is higher than the KPI defined in D4.2 (0.8) [17]. 

 KPI3: NUMBER FAULTS AND/OR FAILURES DETECTED 

AUTOMATICALLY THROUGH DATA ANALYSIS 

The inspection of the SCADA and sensor data of the inverter by AI, ML, algorithms will detect trending 

and deviations in the measurements that may indicate a fault or a failure in the PV plant. For 

confidentiality reasons, no absolute figures can be disclosed in terms of fault detected and fault 

registered by the O&M teams. Nevertheless, it can be said that 85% of the conditions detected by the 

AI4PV solutions, were considered as True Positive. This value is higher than the target (80%).  

 KPI4: FAULT DETECTION ACCURACY 

This KPI describe the accuracy of the fault detection and classification algorithms developed within 

the AI4PV project. It is calculated via Equation 3-4. 
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𝐹𝐷𝐴 =
𝑁_𝑡𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒_𝑠𝑡𝑎𝑡𝑒

𝑁_𝑡𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒_𝑠𝑡𝑎𝑡𝑒 + 𝑁_𝑓𝑎𝑙𝑠𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒_𝑠𝑡𝑎𝑡𝑒
% EQUATION 3-4 

A preliminary validation was already performed during the development phase, upon the training 

dataset (as explained in [1]) which showed promising results with the accuracy of the developed tool 

standing at 95-96%. 

However, an additional validation was performed during the validation phase, on new data. The 

number of failures registered by the O&M team and recorded in O&M reports is used as reference to 

which the classification algorithms are compared. It is worth to mention, that the term “state” into 

the formula describe all the possible states that represent a particular component, which can be 

divided into two main categories: fault-free or faulty condition. 

For what concern the fault detection algorithms for the Power transformer, 0 false positive states 

were registered during the validation phase, which lead to an FDA of 100%. 

During the validation, for what concerns the inverter AI algorithms, 2502 false positive were 

registered. It is worth to mention that these values occur before sunrise and after sunset, with very 

low values of irradiance. Nevertheless, even considering these mispredictions, the FDA stands at 93%, 

much higher than the target value (80%). 

 KPI5: NUMBER OF MAINTENANCE ACTIONS AT VALIDATION SITE 

Depending on the output of the recommendation system, predictive maintenance may be carried out 

to avoid failures. It is the number of interventions advised to the O&M team by AI4PV recommender 

system. However, these recommendations can also include the “do-nothing” option, whenever all the 

components are in normal conditions and the cleaning is not advisable. Having said that, the AI4PV 

task recommendation engine was able to define the best policy on a daily basis suggesting 445 

different tasks, one for each day of the validation. The accuracy of these recommendation is 

evaluated in the following section. 

 KPI6: RECOMMENDATION ACCURACY (RA) 

This KPI describes the number of correct recommendations. It can be evaluated through Equation 3-5. 

𝑅𝐴 =
𝑁_𝑔𝑜𝑜𝑑_𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛

𝑁_𝑡𝑜𝑡_𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛
% EQUATION 3-5 

The number of good recommendations is obtained by analysis in detail the different policy suggested, 

leveraging on the expertise and experience of an O&M technician and comparing the AI4PV results 

against the O&M team’s plan. Having said that, it turns out that 378 out of the 445 recommended 

actions can be deemed as good recommendation. Thus, the RA during the validation stands at 85%. 

This number is higher than the target (70%). 
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 KPI7: PERCENTAGE OF LOSSES & DEGRADATION 

UNDERPERFORMANCE QUANTIFICATION (AEL_UD) 

During the validation, no major degradation phenomena and underperformance were registered, 

thus this KPI is not applicable. 

 KPI8: AVOIDED ENERGY LOSSES DUE TO EARLY DETECTION 

PROBLEMS (AEL_ED) 

During the validation, no major faults and failures were registered, thus this KPI is not applicable. 

 KPI9: REDUCE UNEXPECTED OUTAGES (RUO) IN THE TRANSFORMER 

STATIONS 

During the validation, no major transformer outages were registered, thus this KPI is not applicable. 

 KPI10: REDUCE RESPONSE TIME 

It is the time between failure occurrence and detection. The objective of this KPI is to measure the 

promptness of the AI4PV faults detection algorithms and benchmark it against the conventional 

methods in terms of timings. It can be calculated via Equation 3-6. 

𝑅𝑅𝑇 =
𝑅𝑇𝐴𝐼4𝑃𝑉

𝑅𝑇𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙
% EQUATION 3-6 

Where: 

• 𝑅𝑇𝐴𝐼4𝑃𝑉 is the response time with AI4PV in place, for a particular failure; 

• 𝑅𝑇𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 is the conventional response time (without AI4PV) for a particular failure. 

The AI4PV solutions are able to detect faults and failures at each Timestep. During the validation 

phase the granularity of the data was 15 minutes so is the AI4PV response time. 

Traditional methods consist in creating reports on a hourly or daily basis and send alarms to O&M 

team. This said, assuming a response time of 1 hour for conventional method, we conclude that the 

RRT stands at 25%, which is in compliance with the target value (<90%) [17]. 

 KPI11: PLANT AVAILABILITY INCREASE (PAI) 

During the validation, no downtime or shutdown of the PV park was registered, thus this KPI is not 

applicable. 
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4. CBA: SOILING USE CASE 

In order to evaluate the effectiveness of the proposed solutions, particularly the cleaning optimiser, a 

Cost Benefit Analysis (CBA) is performed to assess potential benefits due to the AI4PV methodology. 

The AI4PV cleaning module, its objectives and operations, are extensively described in [18] and [19]. 

In order to evaluate and quantify potential benefits, the AI4PV approach is compared against 

traditional methods. A common strategy is what is called “the threshold-based approach” (hereafter 

referred as TR-based policy), where PV panels are cleaned whenever the PR is below a certain 

threshold. 

Two options are investigated: 

• Option A: rain events are not taken into account in the cleaning schedule optimisation. 

• Option B: rain events are considered and modelled in the optimisation. 

 CBA OPTION A 

When performing this option, rain events are not modelled into the optimisation. The cleaning 

schedule is affected by two main parameters: 

1. Cost of cleaning; 

2. PR threshold for the TR-based policy. 

Having said that, a sensitivity analysis is performed to see the changes in the potential benefits due 

to these parameters. The results obtained for this option are shown in Figure 4-1. 

 

FIGURE 4-1: OPTION A - CBA AI4PV APPROACH VS TR BASED POLICY 
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As it can be seen, the AI4PV approach brings additional revenues regardless of the cost of cleaning 

and threshold value, when compared to the TR-based policy. However, the magnitude of such 

increase varies according to the level of the cost of cleaning and threshold value. The AI4PV benefits 

are summarised in Table 4-1. 

TABLE 4-1: OPTION A CBA SUMMARY 

                                TR value 

Cost of  

Cleaning (€/Wp) 

TR=0.7 TR=0.75 TR=0.8 TR=0.85 

0.003 7% 1% 2% 1% 

0.006 6% 1% 3% 4% 

0.009 5% 1% 2% 9% 

0.012 2% 1% 6% 14% 

 CBA OPTION B 

Option B include rain events, and their impact on the PR, into the model. The results obtained for this 

option are shown in Figure 4-2. 

 

FIGURE 4-2: OPTION B - CBA AI4PV APPROACH VS TR BASED POLICY 
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As it can be seen, even in this case, the AI4PV approach brings additional revenues regardless of the 

cost of cleaning and threshold value, when compared to the TR-based policy. However, the 

magnitude of such increase varies according to the level of the cost of cleaning and threshold value. 

The AI4PV benefits are summarised in Table 4-2. 

TABLE 4-2: OPTION B CBA SUMMARY 

                                TR value 

Cost of  

Cleaning (€/Wp) 

TR=0.7 TR=0.75 TR=0.8 TR=0.85 

0.003 5% 4% 2% 2% 

0.006 4% 3% 1% 4% 

0.009 3% 3% 2% 8% 

0.012 1% 2% 2% 12% 

 CBA AI4PV CLEANING MODULE WITH AND WITHOUT RAIN 

Finally, a CBA between the two AI4PV method, with and without considering rain events into the 

model, was performed. The results are shown in Figure 4-3. As it can be seen, including rain into the 

definition of cleaning schedule might bring additional revenues, that varies from 0.6% to 1% 

depending on the cost of cleaning. 

 

FIGURE 4-3: CBA AI4PV MODEL WITH RAIN VS AI4PV MODEL WITHOUT RAIN 
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5. CONCLUSIONS  

This deliverable reported all the results and key finding of the AI4PV project collected during the 

validation phase. 

As pointed out, all the solutions developed within the project, successfully passed the test phase, since 

all the KPIs defined were met. 

Furthermore, as proved via the CBA, the AI4PV solutions might bring huge benefits to PV plant 

operators and owners, in the form of additional revenues due to optimal policy recommendation and 

early detection of faults and failures. 
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