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EXECUTIVE SUMMARY 

This deliverable includes the main results obtained in the task T3.3 Method for cost-optimized 

predictive maintenance from the project AI4PV. The work carried out in this task has focused on the 

cost optimization of the predictive maintenance in the different assets in PV plants. 

As a result, a system has been designed and implemented to generate a set of recommendations 

based on a Markov Decision Process, which is capable of modelling the whole system and its evolution 

in time based on its current status. An optimisation process based on the Markov Decision Process 

developed is then used to find the optimal O&M policy to pursue which results in the maximum Return 

on Investment. 

The output of these results will set the baseline for the validation phase of the tools to support the 

operation and maintenance tasks of the photovoltaic plants considered. 

  



 

 

 

 

 Page 4 | 16   

TABLE OF CONTENTS 

Executive summary ............................................................................................................................ 3 

Table of contents .............................................................................................................................. 4 

List of tables ....................................................................................................................................... 5 

Abbreviations and acronyms ............................................................................................................. 6 

Glossary of key terms ......................................................................................................................... 7 

1. Introduction ................................................................................................................................... 8 

1.1 Scope of report ........................................................................................................................ 8 

1.2 Outline of report ...................................................................................................................... 8 

2. MDP-based task recommendation engine ..................................................................................... 9 

2.1 Methodology ........................................................................................................................... 9 

3. Defining the optimal policy and prioritisation ............................................................................ 11 

3.1 Use Case example: Inverters ................................................................................................... 11 

3.1.1 One equipment ............................................................................................................. 13 

3.1.2 Multiple equipments ..................................................................................................... 14 

3.1.3 Impact of irradiance levels ............................................................................................ 14 

4. Conclusion .................................................................................................................................... 15 

References ....................................................................................................................................... 16 

  



 

 

 

 

 Page 5 | 16   

LIST OF TABLES 

Table 3-1: Example of optimal policy and prioritisation .................................................................... 11 

Table 3-2: Component characteristics .............................................................................................. 12 

Table 3-3: Results for computational experiment 1 ........................................................................... 13 

Table 3-4: Results for computational experiment 2 .......................................................................... 14 

Table 3-5: Results for computational experiment 3: results starting in April...................................... 14 

Table 3-6: Results for computational experiment 3: results starting in June ..................................... 14 

 

  



 

 

 

 

 Page 6 | 16   

ABBREVIATIONS AND ACRONYMS  

Acronym Meaning 

MDP Markov Decision Process 

MINLP Mixed Integer Non Linear Programming 

O&M Operation and Maintenance 

RoI Return on Investment 

SCADA Supervisory Control and Data Acquisition 

  



 

 

 

 

 Page 7 | 16   

GLOSSARY OF KEY TERMS 

Artificial Intelligence Artificial intelligence is a wide-ranging branch of computer science concerned with 

building smart machines capable of performing tasks that typically require human 

intelligence. 

Machine Learning 

 

Machine learning is a method of data analysis that automates analytical model 

building. It is a branch of artificial intelligence based on the idea that systems can 

learn from data, identify patterns and make decisions with minimal human 

intervention. 

Deep Learning Deep learning is a subset of machine learning, which is essentially a neural network 

with three or more layers. These neural networks attempt to simulate the 

behaviours of the human brain—albeit far from matching its ability—allowing it to 

“learn” from large amounts of data. 

Fault A fault is an unpermitted deviation of at least one characteristic property 

 (feature) of the system from the acceptable, usual standard condition. 

Failure 

 

Permanent interruption of a system’s ability to perform a required function under 

specified operating conditions. 

Malfunction 

 

Intermittent irregularity in fulfilment of a systems desired function. 

Fault detection 

 

Determination of faults present in a system and time of detection. 

 

Fault diagnosis Determination of kind, size, location and time of detection of a fault by evaluating 

symptoms. Follows fault detection. Includes fault detection, isolation and 

identification 

Markov Decision Process A Markov decision process (MDP) is defined as a stochastic decision-making 

process that uses a mathematical framework to model the decision-making of a 

dynamic system in scenarios where the results are either random or controlled by 

a decision maker, which makes sequential decisions over time 

 



 

 

 

 

 Page 8 | 16   

1. INTRODUCTION 

This document, deliverable D3.3 Method for cost-optimized predictive maintenance, includes a 

description of the recommendation engine used to indicate the problems with the highest associated 

energy loss, evaluated by comparing the data generated by the digital twin developed in the project 

with that recorded by the plant's SCADA system. 

1.1 SCOPE OF REPORT 

In order to face the challenges incurred by climate change, the industry has been striving to improve 

the overall performance of PV systems. Unsolved challenges remain concerning reliability, numerous 

unforeseen outages, and high operation and maintenance (O&M) costs. In this context, this report 

brings the developments to increase the operational performance of PV plants by improving current 

methodologies for O&M in PV systems. A maintenance approach was developed based in a Markov 

decision process model to analyse the data from PV power plants, prioritise actions, advise asset 

replacement, and schedule preventive maintenance tasks based on past experiences and the PV 

system condition. The results allow economic improvement through downtime reduction and early 

detection of system under performance.  

The results presented here have been achieved in the development of task T3.3 cost-optimised 

predictive maintenance, included in the context of the work package WP3 Prescriptive analysis for 

O&M. These advancements, in addition to those achieved in the other tasks of the work package (T3.1 

and T3.2) will allow not only the precise detection of deviations in the signals of the devices but also 

the identification of the root cause and O&M policy that maximise the RoI. 

1.2 OUTLINE OF REPORT 

This report is structures as follows, 

 Chapter 1 introduces the scope of the document 

 Chapter 2 provides background on Markov Decision Process (MDP) and on the AI4PV’s 

recommendation system 

 Chapter 3 explains the methodology for the definition of the optimal policy and some validation 

examples 

 Chapter 4 presents the conclusions of the report 
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2. MDP-BASED TASK RECOMMENDATION ENGINE   

Markov decision process has been often used to model maintenance management. Maintenance 

covers technical and associated administrative actions to retain an item or system in, or restore it to 

a state in which it can perform its required function. A Markov model is a dynamic model that allows 

modelling in time probabilistic evolution of a system. A Markov chain is a discrete time process 

governed by a discrete state space and transition matrix. A Markov decision chain is an extension of a 

Markov chain, steered by actions and with which optimal actions can be determined. A Markov 

Decision Process describes a stochastic process. It is defined by the state space, the action set in each 

state, the transition probabilities, and the immediate rewards in each state when a given action is 

chosen. The control is defined through policies and decision rules. A policy is a sequence of decision 

rules.  

Control policies are machine-age dependent. Therefore, the dimension of the problem is large given 

that the machine’s ages and preventive maintenance states are additional state variables and Markov 

chain states [1] [2] proposed the equipment modelling through modified Markov chain, describing the 

deterioration process, inspection, and maintenance. [3] used a semi-Markov decision process to 

determine whether maintenance should be performed to power equipment in each deterioration 

state and, if so, what type of maintenance. [4] proposed a Markov chain model to estimate an interval 

for the deterioration of offshore structures and discussed the use of the stochastic model in the 

prediction of maintenance timing. [5] presented a method to find the optimum maintenance policy 

for a component. Using Markov processes, they calculated the state probabilities and the optimal 

value of the mean time for preventive maintenance while maximising the availability of a single 

component.  

2.1 METHODOLOGY 

The problem is modelled as a Markov Decision Process as described in D3.2 [6]. The whole model 

consider: 

• Power electronics: whose state can be expressed via a binary variable (0 or 1) which indicates 

whether the device is fault-free or not. Three possible actions can be undertaken: i) “do-

nothing”, ii) “minor repair”, iii) replacement.  

• PV panels: whose state can be expressed via a binary variable (0 or 1) which indicates whether 

the device is fault-free or not. Two possible actions can be undertaken: i) “do-nothing”, ii) 

replacement. 

• Soiling: whose state can assume discrete values between 0 and 1. Soiling equals to 0 means 

PV panel completely clean, whilst when it is equal to 1 the PV panel is assumed to be 

completely dirty. Two possible actions can be undertaken: i)”don’t clean”, ii) “clean”. 

• Power transformer: even if different faults and failures can be classified they all rely to two 

possible states, i)”fault-free”, ii) “faulty”. Even in this case, the two possible actions are: i)”do 

nothing”, ii) “replace”. 
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At each stage, the states are retrieved from the classification and detection algorithms developed 

within the project [7] [8] [9] and the transition matrices are updated according to [6]. 

Thus, this model considers t = 1, . . ., N the discrete-time and N the planning horizon. The decision 

variables are Boolean.  

As explained in D3.2, for each component, for each state we can compute the reward based on the 

different possible actions. 

The estimation of future rewards guides the decisions regarding maintenance actions. A objective 

function considers the reward for the irradiance, by measuring the equipment state and the 

maintenance action costs. The objective function is given by EQUATION 2-1.  

max
𝑎𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡_𝑖

𝑡
∑ ∑ (𝑅𝑒𝑤𝑎𝑟𝑑𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡_𝑖(𝑠𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡_𝑖

𝑡 , 𝑎𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡_𝑖
𝑡 , 𝑎𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡_𝑖

𝑡−1 , … 𝑎𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡_𝑖
0 )

𝑁𝑐𝑜𝑚𝑝

𝑖=1

𝑁

𝑡=𝑡_𝑐

− 𝐶𝑜𝑠𝑡𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡_𝑖 EQUATION 

2-1 

The reward for each component depends on its current state and on all the actions taken in the past. 
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3. DEFINING THE OPTIMAL POLICY AND PRIORITISATION 

In recent years, optimal maintenance policy solution techniques have been sought using only one 

maintenance state. It ignores the possibility that different types of maintenance can be done to 

correct specific problems. Including more than one maintenance state, a maintenance model can be 

more sufficiently applied to real-life situations. 

The optimal maintenance policy is determined using Markov Decision Processes. It describes the 

action to be taken at each state, which yields minimal cost and ensures high equipment availability. 

The system may have numerous states with different alternatives for each state. This makes the 

number of total possible policies very large. 

The optimal policy is found by solving EQUATION 2-1, through a MINLP problem. 

The definition of criticality used in this project is based on the potential energy loss of each fault or 

inefficiency detected in the generation elements of the plant, calculated as the difference between 

the energy predicted by the digital twin and the energy measured. As an example of this, an inverter 

fault will be more critical than a string disconnection, since the inverter usually involves a large 

number of strings and therefore much more energy.  

Thus a priority scale that goes from 0 to N, where N is the number of components. The highest value 

set that action as the most important to pursue in order to maximise the RoI of the plant. Value 0 is 

used when “no-action” is required for that component. An example is provided in TABLE 3-1. 

TABLE 3-1: EXAMPLE OF OPTIMAL POLICY AND PRIORITISATION 

Date Component State Action Priority 

01-02-2023 
PV panels 0 (fault-free) 0 (do nothing) 0 

01-02-2023 Soiling 0.5 (dirty) 1 (clean) 3 

01-02-2023 Inverter 1 (faulty) 1 (replace) 4 

01-02-2023 
Transformer 0 (fault-free) 0 (do nothing) 0 

 

3.1 USE CASE EXAMPLE: INVERTERS 

In this section, three tests are presented, which were used to validate the proposed model and the 

optimal policy. All cases consider t in months, three maintenance actions, where: 

• 𝑎0 represents no maintenance action,  

• 𝑎1 a minor maintenance action,  

• and 𝑎2 the equipment replacement. 
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The state represent deterioration, three states were assumed: 

• 𝐷𝑜𝑘 is a working equipment,  

• 𝐷1𝑘 is a fault and  

• 𝐷2𝑘 is a failure.  

Transition among the states is given by the matrices:  

 

The irradiance rewards consider the average of daily hours of sun per month and the maintenance 

action 𝑎𝑛
𝑡 , represented by the following matrix (𝑠 𝑥 𝑁):    

 

The maximum and minimum rewards values consider the months with the highest solar incidence. It 

considers not planning maintenance in months with high sun exposure, as the actions may cause 

system interruption, and planning the equipment replacement in months with the lowest sun 

exposure.     

The equipment efficiency 𝐸(𝑑𝑘
𝑡 ) is a function of the probability vector of equipment 𝑘 at time 𝑡:  

(4) 

An efficiency of 100% represents the equipment in the deterioration state 𝐷𝑜; 70% of the efficiency 

represents the equipment in deterioration state 𝐷1 ; and 20% of the efficiency represents the 

equipment in deterioration state 𝐷2.     

The maintenance cost relates equipment efficiency reduction associated with the deterioration states 

and the maintenance planning actions 𝑎𝑛
𝑡 . This matrix is proposed to have: no reductions for the 

action 𝑎0, 20% of reduction for the action 𝑎1 , and 90% of reduction for the action 𝑎2. Thus, this matrix 

is defined as follows: 

 

TABLE 3-2 shows the components 𝑘 and its respective lifetime (TP), the number of low maintenance 

level actions already performed (𝑤𝑡𝑝), and the time when this action has been performed 𝑡𝑝.  

TABLE 3-2: COMPONENT CHARACTERISTICS 
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k TP 𝒘𝒌
𝒕𝒑

 𝒕𝒑 

1 10 1 3 

2 12 1 8 

3 6 1 3 

4 12 0 0 

5 12 1 12 

  

 

3.1.1 ONE EQUIPMENT    

This demonstration considers one equipment (K = 1). The equipment has been working for 10 months, 

and a minor maintenance action was performed in month 3.    

The updated deterioration 𝑑𝑘
0

 is calculated as in EQUATION 3-1, where λ= [1 0 0]. 

𝑑𝑘
0 = 𝜆[𝑃𝑎0

]
2

∙ [𝑃𝑎1
] ∙ [𝑃𝑎0

]
7

= [𝑥𝑥 𝑥𝑦 𝑦𝑦] 

 
EQUATION 3-1 

The vector 𝑑𝑘
0

 means that this equipment has xx%, xy% and yy% of the probability of being in the 

deteriorating states 0, 1 and 2, respectively. 

The planning horizon starts in January. The model performs strategic maintenance planning 

regarding irradiation while simultaneously maximising equipment efficiency.   

TABLE 3-3 shows the results obtained by the algorithm.  

TABLE 3-3: RESULTS FOR COMPUTATIONAL EXPERIMENT 1 

k Z Optimal Solution (months) 

1 2 3 4 5 6 7 8 9 10 11 12 

1 1295.4 2 2 2 2 1 1 1 1 2 1 1 1 

The value of the objective function Z was calculated using EQUATION 3-2, which represents the 

accumulated sum of the rewards and the equipment efficiency throughout the year, discounting the 

maintenance costs.  

max 𝑍  =   ∑ 𝑅(𝐼𝑡|𝑎𝑛
𝑡 |) ∑ 𝐸(𝑑𝑘

𝑡 )

 

 𝑘∈𝐾

 

𝑡∈𝑇 

− 𝐶(𝑎𝑛
𝑡 )   EQUATION 3-2 

For the case with only one equipment and two levels of deterioration, the optimal maintenance policy 

indicates that no maintenance actions are performed in months 5,6,7,8,10,11, and 12. Minor 

performance actions are performed in months 1,2,3,4, and 9. The equipment has not been replaced. 

That is, the optimal solution avoid maintenance actions in months with higher irradiances levels (May, 

June, July, and August) and the total reward was 1295.4. 
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3.1.2 MULTIPLE EQUIPMENTS      

This demonstration considers more than one equipment (k=1,2,3,4,5). All components presented in 

TABLE 3-2 are considered in the planning horizon of one year, starting in January. TABLE 3-4 shows the 

suggested maintenance policy for each equipment k, comprising the objective function values and 

the maintenance action performed each month for each equipment. The executions were split since 

there was no dependency on functionality among the components.    

TABLE 3-4: RESULTS FOR COMPUTATIONAL EXPERIMENT 2 

k Z Optimal Solution (months) 

1 2 3 4 5 6 7 8 9 10 11 12 

1 1295.4 2 2 2 2 1 1 1 1 2 1 1 1 

2 1306.2 1 2 2 2 2 1 1 1 2 1 1 1 

3 1311.7 1 2 2 2 2 1 1 1 2 1 1 1 

4 1281.5 3 1 1 2 2 1 1 1 2 1 1 1 

5 1330.5 1 2 2 2 1 1 1 1 2 1 1 1 

3.1.3 IMPACT OF IRRADIANCE LEVELS  

This demonstration considers a smaller planning horizon, of only six months. TABLE 3-5 shows the 

suggested maintenance policy for each equipment k for a planning horizon starting in April. TABLE 3-6 

shows the suggested maintenance policy for each equipment k for a planning horizon starting in June. 

The irradiance rewards directly affect the results. However, it does not avoid that highly deteriorated 

equipment performs maintenance actions in months with higher solar exposure.   

TABLE 3-5: RESULTS FOR COMPUTATIONAL EXPERIMENT 3: RESULTS STARTING IN APRIL 

k Z Optimal Solution (months) 

4 5 6 7 8 9 

1 703.6 2 2 1 1 1 2 

2 715.7 2 2 1 1 1 2 

3 719.3 2 2 1 1 1 2 

4 597.6 3 1 1 1 1 2 

5 736.2 1 2 1 1 1 2 

 

TABLE 3-6: RESULTS FOR COMPUTATIONAL EXPERIMENT 3: RESULTS STARTING IN JUNE 

k Z Optimal Solution (months) 

6 7 8 9 10 11 

1 624.5 3 1 1 2 1 1 

2 644.2 1 1 2 2 1 1 

3 657.7 1 1 2 2 1 1 

4 624.5 3 1 1 2 1 1 

5 709.2 1 1 1 2 1 1 
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4. CONCLUSION         

The proposed Markov Decision Process model allows to replace the interval-based maintenance with 

a cost-efficient predictive approach to prioritise maintenance actions and equipment replacement 

based on past experiences and the PV system forecasted condition.    

Numerical experiments simulating scenarios in PV systems were presented to validate the model. The 

case studies showed that the model adequately plans preventive or corrective maintenance actions 

once the model analyses the current state and estimates the future state. Moreover, it was evident 

that the larger the system and the planning horizon, the solution space increases exponentially. 

Therefore, an overall analysis highlights that an optimisation method or a heuristic shall be applied.  

The work done here completes the WP3 Prescriptive analysis for O&M and the technical part of the 

project as a whole. Once this stage is completed, the algorithm system is ready for validation in the 

next work package, WP4 Validation. This last part will be the confirmation of the suitability of the 

solution proposed and the feedback necessary to make the possible adjustments. 
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