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EXECUTIVE SUMMARY 

The present deliverable D3.2 has been developed in the framework of WP3 activities related to the 

“Prescriptive analytics for O&M” of AI4PV project results and it is the outcome of T3.2 “Return-on-

investment (ROI) prediction”. 

This deliverable presents the methodology developed and designed to evaluate a given O&M policy 

so as to estimate its ROI. This module, developed in collaboration by all the project partners, is 

necessary to assess the impact of a given policy and fault on the ROI and thus it allows to prioritize 

actions whose impact is higher. 

The document explains the ROI prediction model and its module quite extensively and together with 

D3.3 “Method for cost-optimized predictive maintenance” constitute the basis of the O&M 

recommendation key solution within AI4PV project. 
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GLOSSARY OF KEY TERMS 

Artificial Intelligence Artificial intelligence is a wide-ranging branch of computer science concerned with 

building smart machines capable of performing tasks that typically require human 

intelligence. 

Machine Learning 

 

Machine learning is a method of data analysis that automates analytical model 

building. It is a branch of artificial intelligence based on the idea that systems can 

learn from data, identify patterns and make decisions with minimal human 

intervention. 

Deep Learning Deep learning is a subset of machine learning, which is essentially a neural network 

with three or more layers. These neural networks attempt to simulate the 

behaviours of the human brain—albeit far from matching its ability—allowing it to 

“learn” from large amounts of data. 

Reinforcement Learning Reinforcement learning, a subset of deep learning, relies on a model’s agent 

learning how to determine accurate solutions from its own actions and the results 

they produce in different states within a contained environment. This self-

interpreting model is trained on a system of rewards and punishments learned 

through trial and error, seeking the outcome that results in the highest possible 

reward. 

Fault A fault is an unpermitted deviation of at least one characteristic property 

 (feature) of the system from the acceptable, usual standard condition. 

Failure 

 

Permanent interruption of a system’s ability to perform a required function under 

specified operating conditions. 

Malfunction 

 

Intermittent irregularity in fulfilment of a systems desired function. 

Fault detection 

 

Determination of faults present in a system and time of detection. 

 

Fault diagnosis Determination of kind, size, location and time of detection of a fault by evaluating 

symptoms. Follows fault detection. Includes fault detection, isolation and 

identification. 
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1. INTRODUCTION 

This document, deliverable D3.2 “Method for return-on-investment prediction”, includes a 

description of the main modules of this tool, whose objective is to estimate the ROI of a given policy 

and thus prioritise actions which would have the highest impact. 

 SCOPE OF REPORT 

The purpose of this document is to describe quite extensively the ROI prediction model which is a key 

part of the Cost-optimised O&M predictive maintenance. 

This tool, developed within Task 3.2 “Return-on-investment (ROI) prediction”, is a decision-aid layer 

built on top of the digital twins from WP2 and AI algorithms from T3.1 in order to perform a prediction 

of the ROI of a single PV power plant considering parameters such as: O&M costs, assets lifetime, PV 

resource.  

AI is employed here, to simulate the operation of the PV power plant during its maximum lifetime by 

using Markov models as described in the following sections. 

 OUTLINE OF REPORT 

This report is structured as follows: 

 Chapter 1 introduces the scope of the document; 

 Chapter 2 provides an overview of the MDP which is the basis and key representation of the whole 

ROI prediction model. 

 Chapter 3 presents the MDP built for the PV panels; 

 Chapter 3 digs into the cleaning module explaining the algorithms and methodology used; 

 Chapter 5 presents the MDP tailored for the inverter; 

 Chapter 6 goes over the MDP for the transformer; 

 Chapter 7 presents the conclusions of the report 
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2. MARKOV DECISION PROCESS 

Markov decision processes (MDPs) are a powerful mathematical framework for modeling decision 

processes in situations where the outcome of an action depends on the current state of the system, 

but is also affected by some degree of randomness or uncertainty. MDPs are widely used in various 

fields, including operations research, economics, artificial intelligence, and control engineering, to 

name a few. In this section, we provide a comprehensive overview of MDPs, including their 

mathematical foundations, key concepts and terminology, algorithms to solve them, and applications 

in various fields. 

An MDP can be defined as a tuple (S, A, T, R, γ), where: 

• S is a set of states, 

• A is a set of actions,  

• T is a transition function describing the probability of moving from one state to another 

after performing a certain action, 

• R is a reward function assigning a scalar value to each state-action pair, 

• γ is a discount factor controlling the trade-off between immediate and future rewards.  

In other words, an MDP specifies the rules in which the player (agent) can choose from a set of 

available actions, each of which can lead to a different state with a certain probability, and receive a 

reward based on the current state and action. The agent's goal is to maximize the total expected 

reward over a sequence of actions. 

Furthermore, MDPs are based on the Markov property, which states that the future state of a system 

depends only on the current state and action and is independent of the past history of the system. This 

property allows us to represent the system as a directed graph, where each node corresponds to a 

state and each edge corresponds to an action, and the probability of moving from one node to another 

is given by the transition function. The reward function assigns a scalar value to each state-action pair 

that reflects the desirability or cost of being in that state and performing that action. The discount 

factor γ controls the relative importance of immediate and future rewards and typically takes a value 

between 0 and 1, where 0 means that only immediate rewards are important and 1 means that all 

future rewards are equally important. 

Figure 2-1 shows a graphical representation of a general MDP. 

 

FIGURE 2-1: GRAPHICAL REPRESENTATION OF AN MDP 
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In fact, analysing Figure 2-1 it is possible to observe that, given a certain environment (world where 

the agent takes actions), the agent will take certain actions and receive rewards based on them, 

transitioning into a future state. Diving deeper in terms of MDPs concepts and terminologies there 

are a few that should be highlighted1: 

• States: The states represent all the possible configurations of the problem.  

• Actions: The actions are the collection of all possible motions an agent can take;  

• Transition function: The transition function holds the uncertainty of an MDP. Given a 

certain state and action, this function governs the probability of the next state that will 

follow. 

• Reward function: This function determines how much reward is gained by choosing a 

certain action in a certain state.  

• Policy: A policy is a function that maps any state to an action. It defines the agent's behavior 

or strategy in the game and can be deterministic or stochastic. 

• Value function: the value function V(s) of a state s is the expected discounted total reward 

that the agent can receive starting from that state and following a given strategy. It 

measures the desirability of being in that state under the given policy. 

• Q-function: the Q-function Q(s, a) of a state-action pair (s, a) is the expected discounted 

total reward that the agent can receive if it performs action a in state s and then follows a 

given strategy. It measures the desirability of performing that action in that state under the 

given policy. 

• Bellman equation: the Bellman equation is a recursive equation that expresses the value 

function or Q-function of a state or state-action pair in terms of the value function or Q-

function of its successor states or state-action pairs. It is an important tool for solving MDPs 

because it allows us to derive a set of equations that can be solved iteratively to find the 

optimal strategy. 

• Optimal strategy: an optimal strategy is one that maximizes the expected discounted total 

reward across all possible strategies. It is the best possible strategy that the agent can 

pursue in the game given its current knowledge of the system. 

• Optimal value function: The optimal value function V*(s) of a state s is the maximum 

expected discounted total reward. 

Additionally, to solve MDPs there are several algorithms that can be used, including2: 

• Value Iteration: in this algorithm, the value function is iteratively updated until it converges 

to the optimal value function for the MDP. 

• Policy Iteration: In this algorithm, a strategy is alternately evaluated and improved until an 

optimal strategy is found. 

• Q-learning: This is a model-free reinforcement learning algorithm that estimates the optimal 

action value function using temporal difference learning. 

 
1 Kallenberg, Lodewijk. "Markov decision processes." Lecture Notes. University of Leiden 428 (2011). 
2 Martijn van Otterlo, Marco Wiering, "Markov Decision Processes: Concepts and Algorithms", (2012) 
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• SARSA: This is another model-free reinforcement learning algorithm that estimates the 

action value function, but uses an on-policy approach that learns the value of an action in 

the current state and following the current policy thereafter. 

• Monte Carlo methods: These methods use experience gained through interaction with the 

MDP to estimate the value function or optimal policy. 

• Dynamic programming: This is a family of algorithms that includes both value iteration and 

policy iteration, as well as other approaches such as modified policy iteration and linear 

programming. 

Each of these algorithms has its own strengths and weaknesses, and the choice of algorithm depends 

on the specific characteristics of the MDP and the goals of the agent. 
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3. PV PANEL 

In this section the module of the ROI prediction model related to the PV panels is described. As for all 

the other components composing the ROI prediction model, the PV panels were modelled as an MDP. 

In this case the MDP is modelled at string level. Hereafter, the description will focus on a single string. 

 MARKOV DECISION PROCESS 

As described in Section 2, an MDP is made of different parameters: 

• State: describes the condition of the PV panels, in particular it represents the degradation of 

the efficiency/performance ratio of the PV panels. In this case a discrete approach is used 

where the degradation (𝑑) is distributed in 0.05 intervals, between 0 and 1. 

• Action: is the set of possible actions that the agent can take. In this case two possible actions 

are applicable: 

o Action=0, “do nothing”. The string is kept as it is without any intervention. 

o Action=1, “replace”. The string should be replaced with a new one. 

• Transition matrix: it describes in a probabilistic way how the string can move from one 

condition to another. 

• Reward: it is the reward that the agent receives when taking a certain action At at time t, 

under the current state St. 

Each of the abovementioned parameters is extensively described in the following sections. 

3.1.1 STATE AND ACTION 

AI4PV string’s faults detection algorithms can detect different fault and failures (excluding soiling for 

which a dedicated model has been implemented). All these faults result in a decrease of the efficiency 

of the PV panels up until their shutdown. The degradation was discretized into 0.05 range intervals 

between 0 and 1, which gives us a total of 20 states: 

• 𝑆𝑡𝑎𝑡𝑒 0: 0 < 𝑑 ≤  0.05 

• 𝑆𝑡𝑎𝑡𝑒 1: 0.05 < 𝑑 ≤ 0.10 

• 𝑆𝑡𝑎𝑡𝑒 2: 0.10 < 𝑑 ≤ 0.15 

• 𝑆𝑡𝑎𝑡𝑒 3: 0.15 < 𝑑 ≤ 0.20 

• 𝑆𝑡𝑎𝑡𝑒 4: 0.20 < 𝑑 ≤ 0.25 

• 𝑆𝑡𝑎𝑡𝑒 5: 0.25 < 𝑑 ≤ 0.30 

• 𝑆𝑡𝑎𝑡𝑒 6: 0.30 < 𝑑 ≤ 0.35 

• 𝑆𝑡𝑎𝑡𝑒 7: 0.35 < 𝑑 ≤ 0.40 

• 𝑆𝑡𝑎𝑡𝑒 8: 0.40 < 𝑑 ≤ 0.45 

• 𝑆𝑡𝑎𝑡𝑒 9: 0.45 < 𝑑 ≤ 0.50 

• 𝑆𝑡𝑎𝑡𝑒 10: 0.50 < 𝑑 ≤ 0.55 

• 𝑆𝑡𝑎𝑡𝑒 11: 0.55 < 𝑑 ≤ 0.60 

• 𝑆𝑡𝑎𝑡𝑒 12: 0.60 < 𝑑 ≤ 0.65 

• 𝑆𝑡𝑎𝑡𝑒 13: 0.65 < 𝑑 ≤ 0.70 
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• 𝑆𝑡𝑎𝑡𝑒 14: 0.70 < 𝑑 ≤ 0.75 

• 𝑆𝑡𝑎𝑡𝑒 15: 0.75 < 𝑑 ≤ 0.80 

• 𝑆𝑡𝑎𝑡𝑒 16: 0.80 < 𝑑 ≤ 0.85 

• 𝑆𝑡𝑎𝑡𝑒 17: 0.85 < 𝑑 ≤ 0.90 

• 𝑆𝑡𝑎𝑡𝑒 18: 0.90 < 𝑑 ≤ 0.95 

• 𝑆𝑡𝑎𝑡𝑒 19: 0.95 < 𝑑 ≤ 1 

Even though, different faults have different impact on the power output of the string and need 

dedicated algorithms for their detection, in case these faults occur the only possible intervention is to 

replace the device, depending on their impact on the power output. 

3.1.2 TRANSITION PROBABILITIES 

PV panels undergo different degradation processes (i.e., micro-cracks and hot spots, light induced 

degradation, etc) that lead to underperformance of the PV cells. Thus, it is essential to quantify such 

degradation in order to evaluate possible economic benefits that may arise from the replacement of 

PV panels. The probabilistic approach used to model the degradation of PV panels is described in this 

section. 

3.1.2.1 DEGRADATION 

The degradation process of the PV panels was modelled using the gamma process, a commonly used 

distribution to describe degradation processes. The Gamma degradation process is characterized by 

a shape parameter (α), and a scale parameter (β), which determine the shape of the degradation curve 

and the rate at which the degradation occurs, respectively. The shape parameter reflects the degree 

of heterogeneity in the degradation of the system or component, while the scale parameter 

determines the overall rate of degradation. A higher shape parameter indicates that the degradation 

rate varies more widely across the population of systems or components, while a higher scale 

parameter indicates a faster overall degradation rate.  

To estimate the shape and scale parameters for the degradation of PV panels, information provided 

by the supplier related to underperformance of the PV panels during their lifetime are considered. 

Generally, PV panels degrade around 0.5% every year, generating around 12-15% less power at the 

end of their 25-30 lifespan. The probability density function of the gamma distribution is given by: 

𝒇(𝒙, 𝛂, 𝛃, 𝐭) =  
𝛃𝛂𝐭𝒙𝛂𝐭−𝟏𝒆−𝛃𝐱

𝚪(𝛂𝐭)
 

EQUATION 3-1 

The gamma process is varying on time (t) and allows to compute the probability of a given 

degradation x, given the shape and scale parameters. 

3.1.2.2 TRANSITION MATRIX 

The transition matrix has dimension 𝑠 × 𝑠 × 𝑎, where s is the number of states and a is the number of 

possible actions. 
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The transition probabilities of degradation (𝑑) in the absence of replacement is given by the gamma 

distribution, whilst in the case of replacement, the 𝑑 is set to its minimum value. The transition 

probabilities of performance ratio when the action is to replace are given by: 

𝒑𝒌(𝒅|𝒅𝒊, 𝒂 = 1) =  { 
1      𝒅𝒋 = 0

 0      𝒅𝒋 ≠ 0
 EQUATION 3-1 

3.1.3 REWARD 

The reward is what the agent receives when taking a certain action At at time t, under the current state 

St. In the case of PV panels the reward depends on the revenue that results from selling the energy 

produced and on the cost of replacing the power transformer. In the case of not replacing, the reward 

depends only on the status of the PV panels and on the current PR. 

The revenue associated with each state at each time t is related not only with the PR of that state but 

also with the irradiance and energy price at the time considered. So, to determine the increase of 

revenue it is necessary to determine the Direct Normal Irradiance (DNI) and energy price at the current 

and future time steps. For this, historical data were used to compute an average for each day of the 

year considering the values of the 15 previous and 15 following days, and the values over the years. 

The meteorological data were collected from Copernicus [1] and the historical electricity price data 

(PD) from REN [2]. 

𝑬(𝑫𝑵𝑰(𝒕𝒌), 𝒑𝒓𝒊𝒄𝒆(𝒕𝒌)) =
𝟏

𝟑𝟏𝒀
∑ ∑ 𝑫𝑵𝑰 𝒚,𝒅(𝒕𝒌)+𝒊 ∙ 𝑷𝑫𝒚,𝒅(𝒕𝒌)+𝒊

𝟏𝟓

𝒊=−𝟏𝟓

𝒀

𝒚=𝟏

 EQUATION 3-2 

Having that information, the rewards for moving from state 𝑠𝑖  to state 𝑠𝑗  taking the actions of not 

replacing (𝑎 = 0) and replacing (𝑎 = 1) are given by: 

𝒓𝒌(𝒅𝒋|𝒅𝒊, 𝒂 = 𝟎) = 𝑨𝒓𝒆𝒂𝒄𝒆𝒍𝒍 ∙ 𝑬𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚 ∙ (𝑷𝑹𝒎𝒂𝒙 − 𝒅𝒊) ∙ 𝑵 ∙ 𝑬(𝑫𝑵𝑰(𝒕𝒌), 𝒑𝒓𝒊𝒄𝒆(𝒕𝒌)))    

𝒓𝒌(𝒅𝒋|𝒅𝒊, 𝒂 = 𝟏) = 𝑨𝒓𝒆𝒂𝒄𝒆𝒍𝒍 ∙ 𝑬𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚 ∙ 𝑷𝑹𝒎𝒂𝒙 ∙ 𝑵 ∙ 𝑬(𝑫𝑵𝑰(𝒕𝒌), 𝒑𝒓𝒊𝒄𝒆(𝒕𝒌)) − 𝑪𝒐𝒔𝒕𝑷𝑽_𝒑𝒂𝒏𝒆𝒍𝒔 

EQUATION 3-3 

Where: 

• 𝐴𝑟𝑒𝑎𝑐𝑒𝑙𝑙 is the area of 1 PV panel; 
• 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 is the efficiency of the PV panels stated by the manufacturer; 
• 𝑃𝑅𝑚𝑎𝑥 is the maximum PR; 
• 𝑑𝑖  is the degradation of the state 𝑖; 
• 𝑁 is the number of PV panels in the park; 

• 𝐸(𝐷𝑁𝐼(𝑡𝑘), 𝑝𝑟𝑖𝑐𝑒(𝑡𝑘)) is the expected value of Irradiation*Price for 𝑡 = 𝑡𝑘  based on historical 

values. 
• 𝐶𝑜𝑠𝑡𝑃𝑉_𝑝𝑎𝑛𝑒𝑙𝑠 is the cost encountered to replace the PV panels. 
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4. CLEANING MODULE 

In this section we will describe the component of the ROI model that is related to the soiling of the PV 

Panels. Soiling of photovoltaic (PV) panels can significantly reduce their efficiency, making soiling a 

critical issue in PV parks. Regular cleaning is essential to ensure optimal performance, increase power 

production, and prevent permanent damage to the panels. To maximize energy output and thus the 

profit, optimizing the cleaning schedule based on local weather patterns, dust levels, and the time of 

year is crucial. In this section we will describe how to evaluate the cleaning policy that will result in the 

highest ROI having into account soiling, seasonal variations in weather (irradiance and precipitation) 

and variations in electricity prices. 

 MARKOV-DECISION PROCESS 

 
FIGURE 4-1: REPRESENTATION OF FINITE HORIZON NON-STATIONARY MDP 

The problem of soiling was formulated as a Finite Horizon Non-Stationary Markov Decision Process 

(MDP) with the goal of minimizing cleaning costs and lost revenue due to soiling. Figure 4-1 describes 

the model, where: 

• State S(t): describe the condition of the Soiling Rate (SR). In this case a discrete approach is 

used where the SR is distributed in 0.05 intervals, between 0 and 1. 

• Action A(t): is the set of possible actions that the agent can take. In the case of the PV Panels 

cleaning two possible actions are applicable: 

o Action=0, “do nothing”. The PV panels are kept as they are without any intervention. 

o Action=1, “clean”. The PV panels are cleaned, and the performance ratio returns to its 

maximum value. 

• Transition matrix: it describes in a probabilistic way how the performance ratio can move 

from one condition to another depending on the soiling, probability of rain and action taken. 

• Reward R(t): it is the reward that the agent receives when taking a certain action At at time t, 

under the current state St. It depends on the historic data of irradiance and prices at the 

current day. 

Each of the above-mentioned parameters is described in the following sections. 

4.1.1 STATE AND ACTION 

AI4PV representation of the state of PV panels is based on the SR of the panels, which can take 

continuous values from 0 to 1. In the MDP representation the continuous values of the SR were 

discretized into 0.05 range intervals between 0 and 1, which gives us a total of 20 states: 
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• 𝑆𝑡𝑎𝑡𝑒 0: 0 < 𝑆𝑅 ≤  0.05 

• 𝑆𝑡𝑎𝑡𝑒 1: 0.05 < 𝑆𝑅 ≤ 0.10 

• 𝑆𝑡𝑎𝑡𝑒 2: 0.10 < 𝑆𝑅 ≤ 0.15 

• 𝑆𝑡𝑎𝑡𝑒 3: 0.15 < 𝑆𝑅 ≤ 0.20 

• 𝑆𝑡𝑎𝑡𝑒 4: 0.20 < 𝑆𝑅 ≤ 0.25 

• 𝑆𝑡𝑎𝑡𝑒 5: 0.25 < 𝑆𝑅 ≤ 0.30 

• 𝑆𝑡𝑎𝑡𝑒 6: 0.30 < 𝑆𝑅 ≤ 0.35 

• 𝑆𝑡𝑎𝑡𝑒 7: 0.35 < 𝑆𝑅 ≤ 0.40 

• 𝑆𝑡𝑎𝑡𝑒 8: 0.40 < 𝑆𝑅 ≤ 0.45 

• 𝑆𝑡𝑎𝑡𝑒 9: 0.45 < 𝑆𝑅 ≤ 0.50 

• 𝑆𝑡𝑎𝑡𝑒 10: 0.50 < 𝑆𝑅 ≤ 0.55 

• 𝑆𝑡𝑎𝑡𝑒 11: 0.55 < 𝑆𝑅 ≤ 0.60 

• 𝑆𝑡𝑎𝑡𝑒 12: 0.60 < 𝑆𝑅 ≤ 0.65 

• 𝑆𝑡𝑎𝑡𝑒 13: 0.65 < 𝑆𝑅 ≤ 0.70 

• 𝑆𝑡𝑎𝑡𝑒 14: 0.70 < 𝑆𝑅 ≤ 0.75 

• 𝑆𝑡𝑎𝑡𝑒 15: 0.75 < 𝑆𝑅 ≤ 0.80 

• 𝑆𝑡𝑎𝑡𝑒 16: 0.80 < 𝑆𝑅 ≤ 0.85 

• 𝑆𝑡𝑎𝑡𝑒 17: 0.85 < 𝑆𝑅 ≤ 0.90 

• 𝑆𝑡𝑎𝑡𝑒 18: 0.90 < 𝑆𝑅 ≤ 0.95 

• 𝑆𝑡𝑎𝑡𝑒 19: 0.95 < 𝑆𝑅 ≤ 1 

As mentioned above, the 2 possible actions are to “do nothing” or to “clean”. In the next section it is 

explained how these actions influence the transition probabilities and the rewards. 

4.1.2 TRANSITION PROBABILITIES 

The Transition Probabilities were computed based on the soiling process, rain probability, the days 

since the previous cleaning and the action taken. 

4.1.2.1 SOILING PROCESS 

To characterize the soiling process the first step was to determine the evolution in time of the SR in 

Evora, by analysing historic data of the Monte das Flores PV Park. The SR expresses the rate of change 

of the soiling loss per day. A thorough analysis of the Performance Ratio (which is monitored by a 

sensor of the panel in the park) of the panels over the course of 4 years was performed. Within the 

historical data, time periods where it didn’t rain for more than 10 days were selected, so that the most 

probable cause for the change of Performance Ratio of the panels was soiling. The SR was determined 

by fitting a linear regression to the evolution of the performance ratio with time, see Figure 4-2. 
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FIGURE 4-2: LINEAR REGRESSION OF THE SR 

Subsequently, the soiling process was modelled using the gamma process, a commonly used 

distribution to describe degradation processes. The Gamma degradation process is characterized by 

a shape parameter (α), and a scale parameter (β), which determine the shape of the degradation curve 

and the rate at which the degradation occurs, respectively. The shape parameter reflects the degree 

of heterogeneity in the degradation of the system or component, while the scale parameter 

determines the overall rate of degradation. A higher shape parameter indicates that the degradation 

rate varies more widely across the population of systems or components, while a higher scale 

parameter indicates a faster overall degradation rate.  

To estimate the shape and scale parameters for the soiling process, the degradation data from 

historical SCADA data were fitted to a Gamma degradation distribution [3]. The probability density 

function of the gamma distribution is given by: 

𝒇(𝒙, 𝛂, 𝛃, 𝐭) =  
𝛃𝛂𝐭𝒙𝛂𝐭−𝟏𝒆−𝛃𝐱

𝚪(𝛂𝐭)
 EQUATION 4-1 

The gamma process is varying on time (t) and allows to compute the probability of a given 

degradation x, given the shape and scale parameters. 

4.1.2.2 RAIN PROBABILITY 

The rain probability was computed based on [4] and a more detailed description can be found in the 

article. A rain event (RE) was defined as a day where the daily precipitation was above 5 mm, which is 

in agreement with the range described in the literature. The arrival rate of rain, 𝜆, during day d of any 

year was estimated as the combination of the moving average of 7 days and the average of the same 

day over Y years: 
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𝝀(𝒅) =
𝟏

𝟕𝒀
∑ ∑ 𝑹𝑬𝒚,𝒅+𝒊

𝒀

𝒚=𝟏

𝟑

𝒊=−𝟑

 
EQUATION 4-2 

The rain occurrence is then modelled as a non-homogeneous Poisson process with arrival rate 𝜆(𝑑): 

𝒑𝑹(𝒕𝒌) = 𝟏 −  𝒆𝝀(𝒅)∙∆𝒕 EQUATION 4-3 

This estimation of rain probabilities assumes that the time-varying statistics of rain events are 
repeated periodically each year and that the statistics of rain vary slowly enough to be considered 
stationary over a week timeframe. The probability distribution of RE of the PV park at stake is shown 
in Figure 4-3. 

 

FIGURE 4-3: RAIN PROBABILITY THROUGHOUT THE YEAR 

The cleaning effect of rain events depend on many factors, especially on the amount of rainfall. Long 
and heavy rain may clean the panels nearly perfectly while short and light rain events may increase 
the soiling. The probability of a state going into another state after a rain event was computed 
analysing historic transitions of rain events for each state, which can be written as: 

𝒑𝑺(𝒔𝒋|𝒔𝒊, 𝒓𝒂𝒊𝒏) =  
𝑵 (𝒔𝒋|𝒔𝒊)

𝑵(𝒔𝒊)
 EQUATION 4-4 

Where  𝑁(𝑠𝑗|𝑠𝑖) is the number of times that there was a transition from state  𝑠𝑖  to state  𝑠𝑗  after a 

rain event and  𝑁(𝑠𝑖) is the total number of times that  𝑠 = 𝑠𝑖 before a rain event. 

4.1.2.3 TRANSITION MATRIX 

The transition matrix has dimension 𝑠 × 𝑠 × 𝑎, where s is the number of states and a is the number of 

possible actions. 
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The transition probabilities of performance ratio in the absence of cleaning are given by:  

𝒑𝒌(𝑺𝑹𝒋|𝑺𝑹𝒊, 𝒂 = 𝟎) =  𝒑𝑹(𝒕𝒌)𝒑𝑺𝑹(𝑺𝑹𝒋|𝑺𝑹𝒊, 𝒓𝒂𝒊𝒏) + [𝟏 − 𝒑𝑹(𝒕𝒌)]𝒑𝑺𝑹(𝑺𝑹𝒋|𝑺𝑹𝒊, 𝒏𝒐 𝒓𝒂𝒊𝒏) 

EQUATION 4-5 

Where: 

• 𝑝𝑅(𝑡𝑘) is the probability of rain when 𝑡 = 𝑡𝑘; 

• 𝑝𝑆𝑅(𝑆𝑅𝑗|𝑆𝑅𝑖, 𝑟𝑎𝑖𝑛) is the probability of 𝑆𝑅𝑖 going into 𝑆𝑅𝑗  in the case where it rains; 

• 𝑝𝑆𝑅(𝑠𝑗|𝑠𝑖, 𝑛𝑜 𝑟𝑎𝑖𝑛) is the probability of 𝑆𝑅𝑖 going into 𝑆𝑅𝑗  in the case where it does not rain. 

In the case of cleaning, we assume a perfect cleaning that results in the SR being set to zero. The 
transition probabilities of SR when the action is to clean are given by: 

𝒑𝒌(𝑺𝑹𝒋|𝑺𝑹𝒊, 𝒂 = 1) =  { 
1      𝑺𝑹𝒋 = 0

 0      𝑺𝑹𝒋 ≠ 0
 EQUATION 4-6 

4.1.3 REWARD 

As described above, the reward is what the agent receives when taking a certain action At at time t, 

under the current state St. In the case of cleaning PV panels, the reward depends on the increase of 

revenue that results from cleaning since the PR increases, but also on the cost of cleaning. In the case 

of not cleaning the PV panels, the reward depends only on the current PR and the revenue associated 

with that. 

In the case of not cleaning, the reward represents the revenue losses due to soiling, whilst in the case 

of cleaning it is the cost of that intervention. 

Having that information, the rewards for moving from state 𝑠𝑖  to state 𝑠𝑗  taking the actions of not 

cleaning (𝑎 = 0) and cleaning (𝑎 = 1) are given by: 

𝒓𝒌(𝑺𝑹𝒋|𝑺𝑹𝒊, 𝒂 = 𝟎) = −𝑨𝒓𝒆𝒂𝒄𝒆𝒍𝒍 ∙ 𝑬𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚 ∙ 𝑺𝑹𝒊 ∙ 𝑵 ∙ 𝑬(𝑫𝑵𝑰(𝒕𝒌), 𝒑𝒓𝒊𝒄𝒆(𝒕𝒌))) 

𝒓𝒌(𝑺𝑹𝒋|𝑺𝑹𝒊, 𝒂 = 𝟏) =  −𝒄𝒐𝒔𝒕𝒄𝒍𝒆𝒂𝒏𝒊𝒏𝒈   

EQUATION 4-7 

Where: 

• 𝐴𝑟𝑒𝑎𝑐𝑒𝑙𝑙 is the area of 1 PV panel; 
• 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 is the efficiency of the PV panels stated by the manufacturer; 
• 𝑆𝑅𝑖 is the SR of state i; 
• 𝑁 is the number of PV panels in the park; 

• 𝐸(𝐷𝑁𝐼(𝑡𝑘), 𝑝𝑟𝑖𝑐𝑒(𝑡𝑘)) is the expected value of Irradiation*Price for 𝑡 = 𝑡𝑘  based on historical 

values. 
• 𝐶𝑜𝑠𝑡𝑐𝑙𝑒𝑎𝑛𝑖𝑛𝑔 is the cost encountered to clean the whole plant. 
  



D3.2  
Method for return-on-investment prediction 

 

 

 

 Page 20 | 27   

5. INVERTER MODEL 

In this section the module of the ROI prediction model related to the inverters is described. As for all 

the other components composing the ROI prediction model, the inverters were modelled as an MDP.  

 MARKOV DECISION PROCESS 

As described in Section 2, an MDP is made of different parameters: 

• State: describes the conditions of the inverter. 

• Action: is the set of possible actions that the agent can take based on the state of the inverter.  

• Transition matrix: it describes in a probabilistic way how the inverter can move from one 

condition to another. 

• Reward: it is the reward that the agent receives when taking a certain action At at time t, 

under the current state St. 

Each of the abovementioned parameters is extensively described in the following sections. 

5.1.1 STATE AND ACTION 

AI4PV inverter’s faults detection algorithms are capable of detecting different fault and failures which 

are represented by three possible states: 

• State 0: Fault-free condition: the equipment is trouble-free and in optimal working condition. 

• State 1: Degraded equipment: the equipment is still operational, but its performance has 

degraded below the optimal levels. 

• State 2: Equipment failure: the equipment has experienced a failure, compromising the 

production. 

All these states can be represented by a variable 𝑑𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟  which assumes values between 0 and 1. 

When 𝑑𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟  is equal to 0 the component is in State 0, whilst where 𝑑𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟  is equal to 1 the 

component failed. When 𝑑𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟  assumes values between 0 and 1, this implies degradation in the 

component performance and thus on the energy injected by the PV plant. 

There is a total of N maintenance actions that can be taken to transition between states. These actions 

are represented by the variable a, where 𝑎𝑜  indicates no maintenance action and 𝑎𝜎  represents 

corrective maintenance of level 𝜎 . Three possible actions were identified: 

• Action 0: “do nothing”. No intervention is envisioned. 

• Action 1: “minor repair”. Minor repairs are envisioned such as replacement of minor 

components such as cables, connectors, etc. 

• Action 2: “major repair”. the equipment has experienced a failure and it requires major repair 

such as replacement of the whole converter. 
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5.1.2 TRANSITION PROBABILITIES 

The Transition Probabilities were computed based on the degradation process. 

The degradation process was modelled using the gamma process, a commonly used distribution to 

describe degradation processes. The Gamma degradation process is characterized by a shape 

parameter (α), and a scale parameter (β), which determine the shape of the degradation curve and 

the rate at which the degradation occurs, respectively. The shape parameter reflects the degree of 

heterogeneity in the degradation of the system or component, while the scale parameter determines 

the overall rate of degradation. A higher shape parameter indicates that the degradation rate varies 

more widely across the population of systems or components, while a higher scale parameter 

indicates a faster overall degradation rate.  

5.1.2.1 FAILURE PROBABILITY 

The failure probability was computed considering the mean time between failures (MTBF): 

𝑴𝑻𝑩𝑭  =  
∑ 𝒕𝒐𝒕𝒂𝒍 

   𝒐𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒂𝒍 𝒕𝒊𝒎𝒆

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒇𝒂𝒊𝒍𝒖𝒓𝒆𝒔
 EQUATION 5-1 

The failure rate 𝜆(𝑑), during day d of any year was estimated as the: 

𝝀(𝒅)  =  
𝟏

𝑴𝑻𝑩𝑭
 EQUATION 5-2 

The failure occurrence is then modelled as a non-homogeneous Poisson process with arrival rate 𝜆(𝑑): 

𝒑𝑭(𝒕𝒌) =  𝟏  −  𝒆−𝝀(𝒅)⋅𝚫𝒕 EQUATION 5-3 

Where 𝑅(𝑡𝑘) =  𝑒−𝜆(𝑑)⋅∆𝑡is the reliability, that is the probability of the equipment working in perfect 

condition in the following 𝑡𝑘 days. This estimation of failure probabilities assumes that the time-

varying statistics of events are repeated periodically each year and that the statistics of failure events 

vary slowly enough to be considered stationary over a week timeframe. 

5.1.2.2 TRANSITION MATRIX 

The transition matrix has shape 𝑠 × 𝑠 × 𝑎 where 𝑠 is the number of states and 𝑎 is the number of 

possible actions. 

The transition probabilities of performance ratio in the absence of maintenance are given by: 

𝒑𝒌 (𝒅𝒊𝒏𝒗𝒆𝒓𝒕𝒆𝒓𝒋
|𝒅𝒊𝒏𝒗𝒆𝒓𝒕𝒆𝒓𝒊

, 𝒂 = 𝟎)   =  𝒑𝑭(𝒕𝒌) EQUATION 5-4 

The transition probabilities of performance ratio when the action is maintenance level 𝜎  are given by: 

𝒑𝒌 (𝒅𝒊𝒏𝒗𝒆𝒓𝒕𝒆𝒓𝒋
|𝒅𝒊𝒏𝒗𝒆𝒓𝒕𝒆𝒓𝒊

, 𝒂 = 𝟏 𝒐𝒓 𝟐)   =   { 
1      𝒅𝒊𝒏𝒗𝒆𝒓𝒕𝒆𝒓𝒋

= 0

 0      𝒅𝒊𝒏𝒗𝒆𝒓𝒕𝒆𝒓𝒋
≠ 0

 EQUATION 5-5 
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5.1.3 REWARD 

It is necessary to estimate the future rewards that can be expected to make informed decisions about 

maintenance actions. It requires considering various factors, such as the efficiency of the equipment 

and the costs associated with performing maintenance actions. 

Having that information, the rewards for moving from state 𝑠𝑖  to state 𝑠𝑗  taking the actions of “do 

nothing” (𝑎 = 0) correspond to the revenue losses due to the current level of degradation (𝑑𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟𝑖
) 

whilst for “minor repair” (𝑎 = 1) and major repair (𝑎 = 2) the reward is associated to the cost of the 

action. The rewards can be computed as follows: 

𝑟𝑘(𝑑𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟𝑗
|𝑑𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟𝑖

, 𝑎 = 0) = −(𝑅𝑒𝑤𝑎𝑟𝑑𝑃𝑉𝑝𝑎𝑛𝑒𝑙𝑠
+ 𝑅𝑒𝑤𝑎𝑟𝑑𝑐𝑙𝑒𝑎𝑛𝑖𝑛𝑔) ∗ 𝑑𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟𝑖

  

𝒓𝒌(𝒅𝒊𝒏𝒗𝒆𝒓𝒕𝒆𝒓𝒋
|𝒅𝒊𝒏𝒗𝒆𝒓𝒕𝒆𝒓𝒊

, 𝒂 = 𝟏) = − 𝑪𝒐𝒔𝒕𝒎𝒊𝒏𝒐𝒓_𝒓𝒆𝒑𝒂𝒊𝒓 

𝑟𝑘(𝑑𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟𝑗
|𝑑𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟𝑖

, 𝑎 = 2) = − 𝐶𝑜𝑠𝑡𝑚𝑎𝑗𝑜𝑟_𝑟𝑒𝑝𝑎𝑖𝑟  

EQUATION 5-6 

Where: 

• 𝑅𝑒𝑤𝑎𝑟𝑑𝑃𝑉𝑝𝑎𝑛𝑒𝑙𝑠
 is the reward computed by the PV panels module, as described in Section 3.1.3; 

• 𝑅𝑒𝑤𝑎𝑟𝑑𝑐𝑙𝑒𝑎𝑛𝑖𝑛𝑔 is the reward computed by the Cleaning module as described in Section 4.1.3; 

• 𝑑𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟𝑖
 is the degradation at state i. 

• 𝐶𝑜𝑠𝑡𝑚𝑖𝑛𝑜𝑟_𝑟𝑒𝑝𝑎𝑖𝑟  and 𝐶𝑜𝑠𝑡𝑚𝑎𝑗𝑜𝑟_𝑟𝑒𝑝𝑎𝑖𝑟  are the costs for minor and major repair. 
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6. TRANSFORMER MODEL 

In this section the module of the ROI prediction model related to the transformer is described. As for 

all the other components composing the ROI prediction model, the transformer was modelled as an 

MDP too. 

 MARKOV DECISION PROCESS 

As described in Section 2, an MDP is made of different parameters: 

• State: describe the condition of the transformer. In this case a binary approach is used where: 

o State=0, means fault-free condition. The transformer is operating in normal 

conditions. 

o State=1, means faulty condition. There is the presence of a fault in the transformer 

(short-circuit or open-circuit condition). 

• Action: is the set of possible actions that the agent can take. In the case of the transformer 

two possible actions are applicable: 

o Action=0, “do nothing”. The transformer is kept as it is without any intervention. 

o Aciton=1, “replace”. The transformer should be replaced with a new one. 

• Transition matrix: it describes in a probabilistic way how the transformer can move from one 

condition to another. 

• Reward: it is the reward that the agent receives when taking a certain action At at time t, 

under the current state St. 

Each of the abovementioned parameters is extensively described in the following sections. 

6.1.1 STATE AND ACTION 

AI4PV transformer’s faults detection algorithm (explained in D3.1 [5]) is based on a Digital Twin 

representation, and can detect three types of conditions: 

• Fault-free condition; 

• Turn-to-turn short circuits; 

• Open-circuit conditions. 

In the MDP representation just two states have been identified: “no faulty” or “faulty” state. The first 

type of condition (fault-free) belongs to the first state (state=0 “no faulty”) whilst the other two belong 

to the “faulty” state. 

Even though, short circuit and open circuit faults have different impact on the power output of the 

transformer and need dedicated algorithms for their detection, in case these faults occur the only 

possible intervention is to replace the device, this is the reason why both faults are represented 

through the same state. 
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6.1.2 TRANSITION PROBABILITIES 

Reliability, Availability and Maintainability (RAM) for power transformers provides insights for the 

prediction of their performance and for the evaluation of the economic impact of their outages. 

Moreover, RAM can be used to improve reliability planning and enhance maintenance and monitoring 

practises [6]. 

A product goes through three different phases during its life cycle [7] [8]: 

• Infant mortality phase: it is an interval with a decreasing failure rate. Failures within this 

phase are usually driven by manufacturing defects, design flaws or installation issues. 

• Useful life phase: within this phase the product shows a relatively constant failure rate, 

where failures are mainly due to random events. Nevertheless, with an increased use of 

the asset, failure events become less random and more predictable leading towards the 

wear out phase. 

• Wear out phase: in this phase the failure rate increases over time due to the ageing of the 

product. 

In reliability assessment, these three phases are commonly represented by what is called bathtub 

curve (see Figure 6-1). 

 

FIGURE 6-1: BATHTUB CURVE 

The Weibull distribution is a model that is commonly used to characterise failure distributions in all 

three phases of the bathtub curve [9]. Equation 6-1 shows the Weibull Reliability Probability 

distribution, where: 
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• 𝜃 is the scale parameter also known as the characteristic failure time: it indicates when in time 

a given population will fail. It is the inverse of the failure rate over a certain time. 

• 𝛽 is the shape parameter of the distribution and it enables the application of the distribution 

to any phase of the bathtub curve. A 𝛽 < 1 models a failure rate that decreases over time 

(infant mortality phase), a 𝛽 = 1 models a constant failure rate (useful life phase) and a 𝛽 > 1 

models a failure rate increasing over time (wear out phase). 

𝑅(𝑡) = 𝑒
−(

𝑡
𝜃

)
𝛽

 
EQUATION 6-1 

[10] and [11] have analysed historical data on a given population of power transformers in order to 

determine the failure rate of such component. In average 110 kV power transformers present a failure 

rate of 0.31%, 220 kV units have a failure rate of 0.62% while for 380 kV units it stands at 0.61%. Within 

this project the first value is considered as the power transformers installed in the demo site is a MV 

one. 

6.1.3 REWARD 

As described above, the reward is what the agent receives when taking a certain action At at time t, 

under the current state St. In the case of power transformers, since the device is either working or not, 

the reward depends on the revenue that results selling the energy produced and on the cost of 

replacing the power transformer. In the case of not replacing, the reward depends only on the status 

of the transformer and on the current PR. 

In this case, the reward takes into account the state of all the other components and thus can be seen 

as the total reward that the agent wants to maximise. It is thus the reward of the whole MDP obtained 

by the combination of all the single MDPs representing the different components. 

Having that information, the rewards for moving from state 𝑠𝑖  to state 𝑠𝑗  taking the actions of not 

replacing (𝑎 = 0) and replacing (𝑎 = 1) are given by: 

𝒓𝒌(𝒔𝒋|𝒔𝒊, 𝒂 = 𝟎) = (𝑹𝒆𝒘𝒂𝒓𝒅𝑷𝑽𝒑𝒂𝒏𝒆𝒍𝒔
+ 𝑹𝒆𝒘𝒂𝒓𝒅𝒄𝒍𝒆𝒂𝒏𝒊𝒏𝒈 + 𝑹𝒆𝒘𝒂𝒓𝒅𝒊𝒏𝒗𝒆𝒓𝒕𝒆𝒓) ∗ (𝟏 − 𝒔𝒊)   

𝑟𝑘(𝑠𝑗|𝑠𝑖 , 𝑎 = 1) = (𝑅𝑒𝑤𝑎𝑟𝑑𝑃𝑉𝑝𝑎𝑛𝑒𝑙𝑠
+ 𝑅𝑒𝑤𝑎𝑟𝑑𝑐𝑙𝑒𝑎𝑛𝑖𝑛𝑔 + 𝑅𝑒𝑤𝑎𝑟𝑑𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟) − 𝐶𝑜𝑠𝑡𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟  

EQUATION 6-2 

Where: 

• 𝑅𝑒𝑤𝑎𝑟𝑑𝑃𝑉𝑝𝑎𝑛𝑒𝑙𝑠
 is the reward computed by the PV panels module, as described in Section 

3.1.3; 

• 𝑅𝑒𝑤𝑎𝑟𝑑𝑐𝑙𝑒𝑎𝑛𝑖𝑛𝑔 is the reward computed by the Cleaning module as described in Section 

4.1.3; 

• 𝑅𝑒𝑤𝑎𝑟𝑑𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟 is the reward computed by the Inverter module as described in Section 5.1.3 

• 𝐶𝑜𝑠𝑡𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟  is the cost necessary to replace the power transformer. 
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7. CONCLUSIONS  

This deliverable detailed the ROI prediction model developed within AI4PV which will be employed to 

estimate the ROI of a given policy and prioritise the actions which have the highest impact. 

As discussed within this document, the MDP represents the backbone of this tool as it is employed to 

simulate the lifetime of all the components. Even tough, in this document each component has been 

described individually, it is clear that the status of one component will impact on all the others. For 

this reason, the ROI prediction model is built as a unique MDP whose parameters (states, actions, 

transition matrix and rewards) are given by the combination of all the single MDPs. 

Figure 7-1 depicts the operation of this tool. It receives as input a certain policy which the user wants 

to evaluate, as well as the current status of all the components. Given these inputs, it provides the ROI 

of that given policy as well as the order of the actions that should be taken, thus prioritising the actions 

with highest impact. 

 

FIGURE 7-1: REPRESENTATION OF THE ROI MODEL 
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