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EXECUTIVE SUMMARY 

This deliverable includes the main results obtained in the task T3.1 Models for root-cause analysis 

with data analytics from the project AI4PV. The work carried out in this task has focused on the 

literature review of the factors that influence PV performance degradation and the different types of 

faults and failures, later focusing on power electronics-and power transformer related issues.  

As a result, the fault classification model was analysed, including data cleaning, feature engineering, 

and the measurement of fault detection accuracy.  In addition to that, initial research on viable options 

for Explainable Artificial intelligence (XAI) techniques has been approached. 

The designs and studies here included will set the baseline for the development of the rest of the tasks 

within WP3, focused on fault diagnosis, and the rest of the technical tasks considered in the project. 
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GLOSSARY OF KEY TERMS 

Artificial Intelligence Artificial intelligence is a wide-ranging branch of computer science concerned 

with building smart machines capable of performing tasks that typically require 

human intelligence. 

Machine Learning 

 

Machine learning is a method of data analysis that automates analytical model 

building. It is a branch of artificial intelligence based on the idea that systems can 

learn from data, identify patterns and make decisions with minimal human 

intervention. 

Deep Learning Deep learning is a subset of machine learning, which is essentially a neural 

network with three or more layers. These neural networks attempt to simulate 

the behaviours of the human brain—albeit far from matching its ability—allowing 

it to “learn” from large amounts of data. 

Fault A fault is an unpermitted deviation of at least one characteristic property 

 (feature) of the system from the acceptable, usual standard condition. 

Failure 

 

Permanent interruption of a system’s ability to perform a required function under 

specified operating conditions. 

Malfunction 

 

Intermittent irregularity in fulfilment of a systems desired function. 

Fault detection 

 

Determination of faults present in a system and time of detection. 

Fault diagnosis Determination of kind, size, location and time of detection of a fault by 

evaluating symptoms. Follows fault detection. Includes fault detection, isolation 

and identification. 

Global Explainability Global Explainability entails explaining the behaviour of the entire model 

(including the features with more importance for the model output). 

Local Explainability Local Explainability aims to explain how a machine learning model makes 

individual predictions. 

Model-agnostic Model-agnostic techniques are designed independently of the architecture of a 

model. 

Model-specific Model-specific techniques designed for a single or a specific subset of the model’s 

architecture type. 

Opaque Model Opaque Model, or “black box”, is a model which requires post-hoc techniques to 

extract information from artificial intelligence models to generate explanations. 

Transparent Model Transparent Model, also called “white box”, is a model which enables a 

straightforward interpretation of its results. 
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1. INTRODUCTION 

This document, deliverable D3.1 Models for root-cause analysis with data analytics from the project 

AI4PV, includes a summary of the results obtained in the process focused on the analysis of 

technologies, tools, mechanisms and methodologies for the initial validation process to be carried out 

in the context of the project AI4PV. 

 SCOPE OF REPORT 

The PVPP has multiple types of equipment working in cooperation to ensure the proper operation of 

the asset. From meteorological stations, through electrical equipment, to the supervisory control and 

data acquisition (SCADA) system, every equipment is prone to faults and failures. However, regarding 

the electrical-related equipment, the PVPP problems can be divided into geological instability issues, 

PV string fuses, overvoltage, substation over temperature and inverter issues, low DC insulation, 

Medium Voltage/Low Voltage (MV/LV) transformer issues, and PV module issues [1]. Even though the 

inverters are the equipment most prone to issues [1] [2], they are not detailed and are seen as black 

boxes [3].  

Usually, the studies regarding the faults and failures in PV systems focus on the DC side (PV modules 

and DC-DC converter). Some issues in the PV modules may be identified by using image processing 

[1] [4], as multiple issues are related to the surface of the PV modules (delamination, cracks, etc.), 

whilst others may be identified using electrical measurements processing [2] [4]. This condition-

based monitoring is very important to avoid larger issues that may cause a large reduction in power 

production or even stop it. Early detection and diagnosis increase the safety and production of the 

PVPP. 

This report is a Deliverable of Task 3.1 from Work Package 3 of the AI4PV Project. It contains a 

literature review on the factors that influence PV performance degradation and the different types of 

faults and failures, later focusing on power electronics-related issues. The literature review considers 

classical and recent scientific papers, as well as white papers. The main advancements and gaps in the 

technology are identified and discussed on how it can be improved.  

It is worth noting that the PVPP have multiple configurations, scenarios, applications, etc. This review 

has a generalized approach at first, but in the end, focuses on the scenario that is studied in the project 

AI4PV. Thus, some solutions that do not fall under the scope of the project are not presented or 

explored as the ones that are the objectives of the project. 

 OUTLINE OF REPORT 

This report is structures as follows, 

 Chapter 1: Introduction presents an overview of the report. 

 Chapter 2: The Factors of Influence summarizes the most common variables that may affect 

the power production of a PVPP, as well as the detection and diagnosis techniques employed in 

PVPP to achieve this goal. Additionally, Fault Signatures of the power converters present a 
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discussion of the state of the art and its gaps, as well as the most common measurements that are 

used for detection and diagnosis. 

 Chapter 3: The Dataset briefly explains the dataset allowing to introduce the steps for the 

Rewrite Script, as well as the Data Cleaning, which includes the interquartile range (IQR) analyses 

for measurement outliers.  

 Chapter 4: ML Algorithms for PVPP inverter focuses on the Machine Learning Algorithms 

used in the hybrid dataset implementation for the fault type classification. The Timeseries Dataset 

allows to reduce the processing time and removes any redundancy that could compromise the 

model’s performance. Additionally, the test accuracy was evaluated in Fault Detection Accuracy, 

and for future study in Explainable Artificial Intelligence Techniques are presented three strategies 

in the context of root-cause analysis. 

 Chapter 5: ML Algorithms for PVPP power transformer focuses on the Machine Learning 

Algorithms used in the hybrid dataset implementation for the fault type classification in power 

transformers.  

 Chapter 6: Conclusions summarizes what is presented in this report. 
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2. THE FACTORS OF INFLUENCE 

The PVPP is composed of multiple subsystems. If one of these systems malfunctions, the problem will 

spread throughout the whole system. Depending on the problem, it can propagate forward (grid 

direction) or backward (PV modules direction). For instance, a problem with the PV modules that 

reduce the incident sunlight will reduce the power production, thus, the expected delivered power 

based on the availability of solar resource will not be matched if a measurement is made at the 

transformer. On the other hand, a switch failure (for instance, an open circuit), will result in problems 

on the AC side (Total Harmonic Distortion - THD, power factor, output power, etc.), and problems on 

the DC side as well: an unbalanced three-phase system will result in a large DC-link voltage oscillation, 

compromising the Maximum Power Point Tracking (MPPT), thus the extracted power from the PV 

modules.  

The understanding of the range of a fault or failure is very important to develop the detection and 

diagnosis algorithms, as a problem that originates in one of the sub-systems may be observed on 

multiple measurement points. At the same time, it is also important to understand how a problem at 

a given point may affect the adjacent sub-systems (forward- or backwards-wise). 

The PV modules may present failure in their mechanical assembly or in their electrical components 

(PV cells, diodes, and cables). Some of the mechanical/structural faults may lead to electrical 

problems too, as well as electrical problems may cause overheating, compromising the PV module 

structure. The meteorological phenomena can also damage the PV modules of a PVPP, sometimes 

affecting all of them uniformly, or sometimes affecting only some of them. 

The mismatch faults of PV modules happen when a PV module, or a set of them, for some reason, are 

not operating in the same conditions as the other sets connected in series or parallel. In a series 

connection, it is expected that all of the PV modules work at the same current. Similarly, in a parallel 

connection, it is expected that all of the PV modules (or PV strings) work at the same voltage. 

Assuming that all the PV modules of a PV string are the same (or as similar as possible, considering 

fabrication errors), a variation of the incident sunlight may cause mismatch faults [5]: 

• Partial shading: trees existence, overhead supply lines, nearby structures; 

• Uniform irradiance distribution: non-uniform nature of irradiance in the day; 

• Soiling: dirt accumulation, snow, and droppings due to birds; 

• Hot spot: immense change in temperature in tropical regions. 

The degradation faults are related to multiple issues that may lead to the sunlight blocking (partial or 

total) of specific areas of PV modules: cell coating, delamination, yellowing, browning, bubble, and 

interconnection [5]. They may also lead to a series resistance increase, causing mismatch as well [1] 

[5]. In dire cases, the heating, both from the environment or from the Joule effects on the PV modules, 

may lead to some degradation too.  

The PV module faults can be detected by electrical and meteorological measurements (real vs. 

expected out power, for instance). Although, their diagnosis, are more commonly achieved by visual 
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inspection (by humans or by image-processing algorithms), some of the mechanical/structural faults 

may lead to similar alteration in the electrical signals from the PV module. 

Despite the possibility of numerous configurations, in a PVPP the PV modules are usually connected 

in series (to increase their output voltage) and, subsequently, connected in parallel at the combiner 

boxes (increasing the current). The cables, connections and combiner boxes may be a source of 

problems. For instance, in [1], combiner box fuse tripping may occur during periods of high irradiance 

with low temperature, resulting in unexpected overcurrent. Even though they are far behind the PV 

modules and power electronics in terms of production loss in case of a problem [1]. 

The problem associated with the DC connection and combiner boxes can be summarized as [5]: 

• Ground faults: an unnatural ground path with no impedance; 

• Arc faults: conductors having discontinuity caused by solar disjoint, damage of a cell, 

connector's corrosion or insulation breakdown; 

• Line to line faults: short circuit among the two joints with unlike potentials; 

• Bypass diode faults: short circuit due to wrong connections. 

• Bridging fault: a loose connection between the different joints having different 

potentials. 

• Open circuit fault: connection breaks down between the solar panels. 

The consequence of those faults and failures is, at the least, a disconnection of the affected string or 

combiner boxes. Those short circuits may even lead to fire and result in cable and/or circuit 

disconnection. Those cable and combiners boxes are reliable and hardly prone to failure, but in case 

of a problem, as they connect the multiple parts of the PVPP, the production associated with them 

will be stopped. This can go from a single PV module, through entire strings or even the whole PV 

panels that are feeding the inverter. 

Some papers are focused on the problem investigation of the PV modules, reducing the power 

electronics and reactive components to a single box labelled as inverter [2] [3]. On the other hand, the 

inverter is composed of multiple interconnected systems, and a single problem in those components 

may lead to a cascade effect that will result in poor performance on the entire PVPP system. 

Being, literally, the central asset in a PVPP, the inverter is one of the assets with the highest problem 

rating and the equipment that, in case of fault or failure, will lead to the highest power loss in PV 

systems [1] [4]. In that sense, it is interesting to develop fault and failure detection and diagnosis tools 

that better evaluate the data related to the power electronics of such systems, i.e., currents, voltages, 

and temperatures. 

General-application inverters (grid-connected, motor drive, etc.) and PV module-related faults and 

failures are already investigated [6] [7]. However, the lack of investigation of AI, and ML applied to a 

fault and failure analysis in the inverter of PV systems shows that there may be a large field of 

exploration, mainly to better understand how to detect and associate the consequences of a DC-DC 

converter input problem (MPPT, PV module disconnection, etc.) with the DC-AC converter output 

(THD, Park's analysis, etc. [8]). Mostly, the effort of the research towards fault and failure detection 
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in DC-AC converters is on the open or short circuit analysis, as those conditions can lead to power loss 

increase, THD increase, and current, voltage or thermal stress over the components (semiconductors 

and reactive), etc. [9] [10]. 

Also, some authors present the faults and failures associated with sensors, drivers, bond wire and 

substrate level, etc. [4] [11] . Such a level of detail would not be applicable to this project. The access 

level of this project is limited to input and output measurements; thus, it does not have access to the 

printed circuit board (PCB) nor the programming of the microcontrollers (firmware). 

In their assembly, the power electronics converters have capacitors and inductors. These elements 

are also prone to problems, mostly due to degradation caused by thermal stresses [4] [11] . The result 

of this thermal degradation may result in the increase of the THD (worsening) at the output of the 

inverter (AC-side), which is an indication of poor power quality that can cause a false trip signal [12]. 

It is worth noting that a problem in the reactive components of the DC-side of the inverter will lead to 

a current and voltage ripple increase, which may affect the control and MPPT algorithms, THD, 

electrical stress, etc. This scenario is an example of the cascade effect that may happen. The problem 

associated with the power electronics and reactive components can be summarized as: 

• Semiconductors: open or short circuit (considering both DC-DC and DC-AC 

converters), which may be caused by the bond wire thermal stress; 

• Sensors: open circuit or wear-out (tuning parameter drift); 

• Drivers: open or short circuit due to electrical or thermal stress, leading to switch open 

or short circuit, or even turning the transistor into a load; 

• Capacitors and inductors: thermal stress that may lead to dielectric cracks, leakages, 

overheating, etc. 

It can be noticed that power electronics have a lot to be explored regarding the faults and failures in 

PV systems. Even though the inverter presents the highest problem rating in the PV plant, it is not 

proportionally addressed. The PV modules are also a large source of problems, but they have a lot of 

investigation regarding their issues, while the same ought to be done with power electronics. 

 DETECTION AND DIAGNOSIS TECHNIQUES 

There are multiple faults and failure detection and diagnosis techniques for each part of a PVPP. 

Besides the specific object of study within a PVPP, multiple strategies can be used to do such a task. 

Regardless of the technique or strategy, they have some clear steps to be followed. In [13] [14] [15], 

the fault and failure detection and diagnosis processes can be summarized as: 

• First, detection: by the evaluation of the input data from the PVPP, it is possible to 

detect if there is a problem happening. At this stage, it is not possible to characterize the 

problem (where, when, how); 

• Second, identification or diagnosis: by applying AI algorithms, it is possible to identify 

the nature of the problem. This is a hard task in complex systems, such as PVPP; 
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• Third, localization and isolation: the developed systems should localize and isolate the 

fault, which is a challenging task that requires information and expert knowledge. 

The main three techniques are named signal-based, model-based, or AI-based. For this project, the 

two latter are being investigated. 

The model-based solutions can be online or offline, where the online solutions are often referred to 

as digital twins (DT). In a very simplified way, this technique compares the measured output (real) vs. 

the ideal/simulated output (virtual) and flags a fault or failure if there is a deviation between those two 

signals [4]. Different approaches can be employed for residual generation including parity equations, 

parameter estimations, state observers, etc. [16] [17]. 

The downside of the model-based solutions is that they require a high expert level in power 

electronics for development, and, in some cases, the measurement of key signals within the inverter 

(firmware and power board level). This would not be a problem for products that are designed taking 

this into consideration, but this is not the current industry standard [12]. This type of measurement 

granularity is achieved only in laboratory prototypes [4] [14]. Nevertheless, they present some 

promising results and a high level of problem isolation, i.e., they can precisely point out where the 

problem occurred. 

To develop a model-based solution for industry scenarios, it is necessary to create a model as close as 

possible to the real asset, considering current and voltage ratings, temperature levels, and using 

tailored solutions for such simulations, etc. However, once achieved, the results are of high accuracy. 

Once the model is developed, the offline or online application can be employed. However, the online 

application (a.k.a. digital twins) needs the backbone to keep the data owing: real-time (or as close as 

possible) measurement being fed to the model, and insightful information being sent back to the real 

asset or to its Operation and Maintenance (O&M) station. 

Also, it is worth noting that the model-based has a limited capability for replication, as each PVPP can 

be unique, even though it has similar problems. Thus, every new asset to be improved with the model-

based detection and diagnosis must go through a careful study of its behaviour and particularities, as 

a poor model can generate multiple false alarms, resulting in a waste of time and money. 

Inside AI solutions, two major data types can be listed: visual and thermal, or electrical. It is worth 

noting that for the AI techniques, a large database is required for training and testing the AI 

algorithms [15]. Even though AI has multiple applications in both fields of PV systems and power 

electronics systems [6], the application of AI to a fault and failure detection and diagnosis has 

relatively fewer papers [13]. The three main approaches using AI and their methodologies are: 

• Electrical measurements (currents, voltages, and their related parameters, i.e., 

power, frequency, etc.) from PV modules, DC-DC converters, or DC-AC converters: artificial 

neural network (ANN), fuzzy logic (FL) and random forest (RF) are employed; 

• Image analysis, mainly infrared shots taken by unmanned aerial vehicles (UAV): deep 

learning (DL) and convolutional neural network (CNN) are employed; 



D3.1  

Models for root-cause analysis with data analytics 
 

 

 

 Page 16 | 45   

• Clustering-based using unlabelled data: k-nearest neighbour (kNN), one-class support 

vector machine (1-SVM), isolation forest (IS), and local outlier factor (LOF) are employed. 

In [5], the concern about the lack of real datasets available for research purposes has risen. Besides 

that, the datasets containing real data are unlabelled and present a few faults and failures. This 

unbalanced data may lead the research to look for out-of-normality analysis. To overcome the 

unbalanced and unlabelled problem, some papers use simulated data. A combination of the real and 

the simulated data may be the best outcome for training the algorithms. 

Regarding power electronics, some papers that tackle fault and failure detection and diagnosis 

solutions from a generalized point of view can be applied to PV systems as well [11]. For instance, a 

methodology that evaluates the data from an inverter feeding an RL load can be applied to PV 

systems, however, the dynamics of replacing an ideal DC-link with a PV module is different. Besides 

the electrical measurements and their related parameters (power, frequency, etc.), the temperature 

is also a key factor. Overheating may be a signal of both fault and failure. Meteorological readings are 

also used by a variety of solutions, as the irradiance and ambient, or module, temperature are 

important factors that will influence the output power of a PVPP. Also, in [11], the AC filter is 

highlighted as an object of study by the AI algorithms. This corroborates the questions risen in [12] 

for the investigation of THD as an indicator of faults or failures. 

Outside of the PV systems, some innovative solutions are exploring novel methodologies for fault and 

failure detection and diagnosis [10] [17]. Whilst some analyse the time-series data or use wavelet 

transformation, other concerns are to convert the time-series data to an image [18], and then apply 

image processing consolidated techniques. Even though those solutions have a generalized approach 

and simplified scenario, i.e., the DC-side of the converters is idealized, they can be adapted and 

explored in PV systems scenarios.  

It can be noted that there are multiple AI algorithms that can be applied to evaluate multiple 

measurements from different points of a PVPP. Most of these solutions are concerned with the PV 

modules, whilst the investigation of the power electronics and reactive components is not as 

explored. Further, to develop a root cause analysis solution, some input vs. output evaluation 

algorithms is not enough: multiple algorithms that evaluate data from different points of the PVPP 

are required to do a proper diagnosis of the fault or failure. Also, some researchers are trying novel 

ways to convert a time-series current data to an image and applying image processing techniques for 

fault and failure pattern recognition. This shows that even though there are some consolidated 

solutions, even already employed by the industry, there is a lot to explore for innovative solutions to 

pre-process the data feeding the AI algorithms. 

 FAULT SIGNATURES 

The fault signatures are defined as the device parameter that provides the indication of a fault event, 

as in [19]. Considering the inverter, the level of monitoring those variables can go from the most 

common input and output currents and voltages alongside temperature (typical measurements of a 

SCADA system), to the measurement of the gate signal of the switch or the sensor signal before 
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calibration. Usually, the input and output variables and temperature are selected for fault and failure 

detection and diagnosis techniques. Besides that, the current and voltage metadata may be stored as 

some key features, such as RMS values, frequency, power factor, THD, etc. The sinusoidal waveform 

will not always be available for processing. A similar assumption can be made for the DC-DC converter 

as well. It is worth noting that some PVPPs have central inverters, where the strings are directly 

connected to the DC-link of the DC-AC converter, thus, they do not have a DC-DC converter stage.  

On the other hand, the reactive components (capacitors mainly, and inductors), are also prone to 

failure and are part of the power converters. They are elusive for fault detection, as some solutions 

focus on non-invasive techniques trying to estimate the state of the capacitor [20]. Even though, they 

are not as explored as the solutions for semiconductors-related faults and failures. 

The investigation around a fault and failure and how they are reflected in the multiple variables of the 

PV systems, tries to identify the fault signatures, how to process them and use them for detection and 

diagnosis. Even still, when compared to the PV-module-related solutions, the power converter is not 

studied as much. Mostly, they are concerned about a switch fault or failure based on measurements 

of the output currents and voltages, with some considering the collector-emitter voltage for IGBTs or 

drain-source voltage for MOSFETs.  

It can be noticed that both model-based and AI-based techniques have current, voltages and 

temperatures as the fault signatures. However, it can be pointed out that some research can be done 

regarding the input currents and voltages of the inverter, the THD of the output currents, or the 

Lissajous figure of the output currents and voltages, etc. Most of the fault signatures already pointed 

out in the literature are reliable and unlikely to be changed, however, the information being extracted 

from those measurements can be further explored.  

The Idc (DC, PV or input current) and Vdc (DC, PV or input voltage) are measurements that are directly 

related to the MPPT algorithm. Depending on the converter topology, they will have a particular 

characteristic: in VSIs, the current is switched, and the voltage is continuous; in CSIs, the current is 

continuous, and the voltage is switched. Even though, the continuous variable has a ripple at the 

switching frequency. They may also present twice the grid frequency in single-phase systems. In 

three-phase balanced systems, the low-frequency ripple disappears. 

However, the consequences of a switch open circuit in the DC-link can mislead the algorithms when 

searching for issues in the inverter. A high-frequency or low-frequency ripple variation will, 

consequently, result in poor MPPT performance, which will lead to reduced power production or 

reduced efficiency. Also, an increased DC-link ripple will reflect a worse THD measured at the output. 

This example shows the close relation between input and output variables that can be explored and, 

to the author's knowledge, has not been extensively investigated. 

It is worth noting that the ripple analysis would require a real-time measurement of the input 

variables, which is not always the case as most SCADA presents RMS values measured in every 

minute, or even higher, intervals. On the other hand, the model-based approach for a closer look at 

the DC-link measurements may bring promising results.  
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The iabc (AC, grid or output current) and vabc (AC, grid or output current) are measurements that are 

directly related to the modulation and control of the DC-AC converter. Also, depending on the 

converter topology they will have characteristics, but, mostly, the measurements are regarding the 

filtered waveform, i.e., sinusoidal currents and voltages. Here, it is possible to evaluate how the DC-

link ripple will affect the waveform. Also, the THD is an interesting reading that can be used for 

detection and diagnosis: the THD may indicate poor DC-link performance, switch problems or even 

capacitor or inductor degradation. Of course, information from other measurements can be used to 

do disambiguation.  

Like the input measurements, the waveform analysis would require a real-time measurement of the 

input variables. In the same way, the model-based approach for a closer look at the AC-link 

measurements may give  promising results. It is worth noting that the THD is a valuable measurement 

that can be stored in a SCADA, for instance.  

Regarding the IGBTs and MOSFETs, a switch failure will result in a non-balance output (in the case of 

three-phase systems), resulting in one of the phases having a lower RMS value. This would be also 

noticeable by a power measurement, as one of the phases would not be supplying as much power as 

the others. Like the DC-link issues, real-time or model-based and AI-based solutions combinations 

can improve the performance of a detection and diagnosis system. 

Parallel to those current and voltage measurements, the temperature measurement of some 

equipment, such as combiner boxes and inverters, is a good indicator of the assets condition The 

temperature of capacitors, inductors and switches can be an additional, or first, indicator if there is an 

issue with the converter, thus, any solution should include the temperature if it is available. 

It can be noticed that the combination of model-based and AI-based solutions can provide the most 

resilient solution, both by working in parallel or at least using the model-based results to feed the AI-

based algorithms. Nevertheless, there are some gaps in the state of the art that can be explored, 

mainly for fault and failure diagnosis, as the detection (first step) is already successfully employed in 

the industry. The new challenge is to combine tested and validated solutions in a way to reduce the 

time to detection and to do an accurate diagnosis of the detected problem, using the multiple 

available data to identify the issue. 

It is worth noting that irradiance and ambient temperature are the input variables for any PV system 

model, thus these meteorological variables are always considered for both DC-side and AC-side 

solutions development. The most common AI algorithms are also listed, showing that multiple 

experiments are being researched and that a deeper investigation regarding where they are being 

applied in PVPP is needed [14].  

The considered measured signals and variables for the PV strings are: 

• PV currents: output current of the PV string; 

• PV power: output power of the PV string; 

• PV voltages: output voltage of the PV string; 

• Strings temperatures: temperature of the PV modules. 
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The considered measured signals and variables for the combiner boxes are: 

• CBs currents: output current of the combiner boxes. Similar to the PV currents; 

• CBs power: output power of the combiner boxes. Similar to the PV power; 

• CBs temperatures: internal temperature of the combiner boxes; 

• CBs voltages: output voltage of the combiner boxes. Similar to the PV voltages; 

The considered measured signals and variables for the power converters are: 

• AC currents: output currents of the inverter, or grid-side currents; 

• AC frequency: frequency of the output currents and voltages; 

• AC voltages: output voltages of the inverter, or grid-side currents; 

• AC powers: output power of the inverter, or grid-side power; 

• DC currents: input currents of the inverter. Similar to the CBs currents; 

• DC power: input power of the inverter. Similar to the CBs power; 

• DC voltages: input voltages of the inverter. Similar to the CBs voltages; 

• Power converter temperature: internal temperature of the inverter housing; 

• THD: total harmonic distortion of the AC currents. Calculated from the sinusoidal 

current signals; 

The considered measured signals and variables for the AC filters are: 

• AC currents: output currents of the inverter, or grid-side currents; 

• AC frequency: frequency of the output currents and voltages; 

• AC power: output power of the inverter, or grid-side power; 

• AC voltages: output voltages of the inverter, or grid-side currents; 

• Power factor: power factor of the AC power. Calculated from the active and reactive 

AC power; 

• THD: total harmonic distortion of the AC currents. Calculated from the sinusoidal 

current signals 
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3. THE DATASET 

The original dataset consists of two main dataset types: meteorological, which defines weather 

conditions such as ambient temperature and daily irradiation, and electrical data provided by the 

SCADA control system (e.g., inverter frequency). For its better understatement and study, a 

characterization for each variable was created (Table 3-1). Furthermore, the description of each 

variable type for both dataset types is in Table 3-2 and Table 3-3. 

TABLE 3-1: VARIABLES CHARACTERIZATION 

Parameter Description 

VarName Name of the variable 

Datatype Type of dataset (“meteo”: weather data; “inv”:  electrical data) 

VarType Variable Type (See Table 3-2 and Table 3-3) 

TransfID Transformer Number 

InvID Inverter Number 

JbID Junction Box Number 

StrgID String Number 

SensID Sensor Number 

MeasID Measurement Tag 

MeasDescp If MeasID is not None, Measurement Description (MeasDescp). Else: None 

State If State == 1 and MeasID != None, the variable is used to find IQR’s value 

Vnorm 

Base value in SI. For mode and control variables, such as Reactive Power 

Control Mode, the normalisation operation isn’t applied. In consequence, 

[Vnorm, Vmin, Vmax] = [0, 0, 0]. Additionally, if normalization isn’t considered as 

input, Vnorm, Vmin and Vmax are set with default values. 

Vmin Minimium value, in per unit   

Vmax Maximum value, in per unit   

MachineID 

Specific equipment associated to the variable: 

• TRANSF_A: Transformer A 

• INV_A.B: Inverter B of TRANSF A   

• JB_A.B.C: Junction Box C of INV A.B   

• STRG_A.B.C.D: String D of JB A.B.C  

• [VarType]_A.B.C.D.E: Sensor E of type [VarType] 

TABLE 3-2: WEATHER’S VARIABLES 

Type Datatype VarType Units 

Ambient Temperature 
Meteo 

TempAmb ºC 

Average Direct Normal Irradiance RadDirAv W/m2 
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Average Plane Irradiance RadPlAv W/m2 

Average Module Temperature TempModAv ºC 

Daily Irradiation Irrad kWh/m2 

Direct Normal Irradiance RadDir W/m2 

Horizontal Irradiance RadH W/m2 

Module Irradiance RadMod W/m2 

Module Temperature TempMod ºC 

Plane Irradiance RadPl W/m2 

Wind Direction WindDir º 

Wind Speed WindS m/s 

TABLE 3-3: SCADA’S VARIABLES 

Type Datatype VarType Units 

Availability 

Inv 

AVL - 

Active Power Pac kW 

Active Power Control Mode PMAXmod - 

Active Power Limit Set-Point PMAXsp kW 

Alternating Current Iac A 

Apparent Power Sac kVA 

Daily Energy Produced ENGDay kWh 

Efficiency EF % 

Frequency Fac Hz 

Internal Temperature TempInt ºC 

Inverter DC IdcI A 

Inverter DC Power PdcI kW 

Junction DC IdcJB A 

Junction DC Power PdcJB kW 

Power Factor Fpac - 

Type Datatype VarType Units 

Power Factor Set-Point 

Inv 

FPsp % 

Priority of Current Injection QCTRref - 

Quadrant Set-Point QQUADsp - 

Reactive Power Qac kvar 
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Reactive Power Control Mode QCTRmod - 

String DC IdcS A 

String DC Power PdcS kW 

Total Energy Produced ENGTot kWh 

Voltage AC Vac V 

Voltage DC Vdc V 

 REWRITE SCRIPT 

The main purpose of rewriting the datasets was to reduce the original size of files and consequently 

speed up the processing time.  As will be mentioned in Subsections 3.1.1 - 3.1.3, it consists in: 

• Define a uniform granularity. 

• Fill in the possible missing data. 

• Merge the datasets (weather and SCADA) 

3.1.1  UNIFORM GRANULARITY 

The initial dataset presents a non-uniform granularity. In the first attempt, a time frame of 15 minutes 

per measurement was considered for the data processing of each signal, respecting the minimum 

requirement of 5 minutes.  

3.1.2 FILLING MISSING DATA 

In the case of a lack of data, the pad method [20] is used to fill in the missing values. This methodology 

consists of filling the gaps with the previous valid value. In the case, it occurs in the first index, ‘0’ was 

assumed as the default value. 

3.1.3 MERGE OF SCADA AND WEATHER DATASETS 

A multiclass classification is described by multiple possible outputs (classes) for each target, although 

each sample can only be labelled as one class [21]. This type of problem characterizes the fault types 

classification under study, which requires a new dataset composed of the following fields: 

• ‘date’: Column of the type ‘string’. It defines the reading date of the signals. E.g., 2020-

03-05 05:00:00+00; 

• [Weather_Features]: Set of columns ordered alphabetically, and related to 

meteorological conditions; 

• [SCADA_Features]: Set of columns associated with SCADA signals, and ordered 

alphabetically; 

• ‘faultType’: Column which identifies the fault’s type.  



D3.1  

Models for root-cause analysis with data analytics 
 

 

 

 Page 23 | 45   

 DATA CLEANING 

Data cleansing, or data cleaning, is a critical step in machine learning (ML) that involves identifying 

and removing any missing, duplicate, or irrelevant data. The advantages of cleaning data include 

improving model performance, reducing bias, and saving processing time and resources. 

3.2.1 PER-UNIT SYSTEM 

The per-unit system, or p.u. system, consists of electrical quantities normalisation (e.g., voltage, 

current, power, etc.) based on predetermined values. For a given quantity (V), the per-unit value 

(Vnorm) is the value related to a base quantity (Vb) by the expression Vnorm = V/Vb [22]. In the current 

section, as is presented in Table 3-4, the features normalisation was achieved based on the system 

per unit. 

TABLE 3-4: PARAMETERS OF PER-UNIT NORMALISATION 

VarType Vnorm  Vmin (pu) Vmax (pu) 

AVL, PMAXmod, QCTRmod, QCTRref, QQUADsp, 

PMAXsp, WindDir 
- - - 

EF, FPsp 100% 0.0 1.0 

ENGDay 4000 kWh 0.0 1.5 

ENGTot 1116 kWh 0.0 100.0 

Fac 50 Hz 0.95 1.03 

FPac 1 -1.0 1.0 

Iac 1310 A 0.0 1.5 

IdcI, IdcJB, IdcS 1300 A 0.0 1.5 

Irrad 7 kWh/m2 0.0 1.5 

Pac, PMAXsp 630 Kw 0.0 1.5 

PdcI, PdcJB, PdcS 725 kW 0.0 1.5 

Qac 630 kvar 0.0 1.5 

RadDir, RadDirAv 1000 W/m2 0.0 1.5 

RadMod, RadH, RadPl, RadPlAv 1000 W/m2 0.0 1.5 

Sac 630 kVA 0.0 1.5 

TempInt, TempMod, TempModAv 25 ºC -0.1 3.0 

Vdc 1000 V 0.0 1.5 

Vac 315 V 0.0 1.5 

WindS 10 m/s 0.0 3.0 

 



D3.1  

Models for root-cause analysis with data analytics 
 

 

 

 Page 24 | 45   

3.2.2 IQRED VALUES 

The interquartile range is used to measure the dispersion of a distribution. This parameter defines the 

difference between the 75th and 25th percentiles of the data (Q3 and Q1), allowing the detection of 

outliers outside the range between the minimum and maximum limits [23]. Additionally, this method 

has been used to obtain the average value of each type of measurement (Figure 3-1- Figure 3-3).  

It is also important to emphasize that the average measurements of temperature and irradiance 

weren't considered in the mean value estimation because of measurement errors. Moreover, in the 

case of module temperatures (TEMPM), it was necessary to disregard the ambient temperature due 

to its reduced daily deviation. 

 

FIGURE 3-1: AC CURRENT OF INV_1.1 FOR 20-06-2020 (IAC,N = 1310 A). 

 

 

FIGURE 3-2: DC CURRENT OF INV_1.1 FOR 20-06-2020 (IDC, N = 1300 A). 
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FIGURE 3-3: GLOBAL IRRADIANCE OF INV_1.1 FOR 20-06-2020 (GN = 1000 W/M2). 

3.2.3 OUTLIERS 

Initially, the Simulink/MATLAB® tool was used to rewrite the dataset considering all the data between 

5 AM and 9 PM. Although, the datasets merge was later implemented by recurring to Python. In this 

case, were only considered dates containing the 5 am. The possibility of missing days in both cases 

set the registration of some errors for each month: 

• Invalid File: e.g.,’ Invalid File inv_Evora_2018-11-07.csv (2023-01-09 09:30:49)’;  

• Invalid Timestamp: e.g.,’ Invalid Timestamp 2018-11-09 05:00:00+00 (2023-01-09 

09:30:50)’; 

• Data Missing (Only Header): e.g., ‘Invalid Timestamp 2018-11-09 05:00:00+00 (2023-

01-09 09:30:50)’. 

The more restrictive the data processing, the more likely outliers will occur.  As shown Table 3-5, the 

consideration of days with both types of datasets will lead to a total of 587 days with data failures, 

with the year 2022 being the most critical. 

TABLE 3-5: NUMBER OF MISSING DAYS 

Month/Year 2018 2019 2020 2021 2022 
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January 31 - - - - 

February 21 - - - - 

March 28 31 4 4 - 

April - - 1 - 30 

May 31 - - - 31 

June 30 - - - 30 

July 31 2 - - 31 

August 31 - - - 31 

September 30 - - - 30 

October - - - 7 31 

November 3 - 1 25 30 

December 1 - - - 31 

Total 237 33 6 36 275 

TABLE 3-6: NUMBER OF DAYS AVAILABLE 

Month/Year 2018 2019 2020 2021 2022 

January - 31 31 31 30 

February 7 28 29 28 28 

March 3 - 27 27 29 

April 30 30 30 30 - 

May - 31 31 31 - 

June - 30 30 30 - 

July - 29 29 31 - 

August - 31 31 31 - 

September - 30 30 30 - 

October 31 31 31 24 - 

November 27 30 30 5 - 

December 30 31 31 31 - 

Total 128 332 360 329 87 

Besides the missing days, some outliers were also detected in the mean value for each measurement, 

as are the examples of Table 3-7. 

TABLE 3-7: EXAMPLE OF OUTLIERS DETECTED BY IQR. 

Type of Error Description Period 
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Error in PYR_1.1.1_R A significant deviation of IQR for the 

global irradiance of INV_1.1, due to 

a faulty operation of PYR_1.1.1_R 

[21-05-2018;16-01-2020] 

Error in JB_1.1.1_AN1 Error in the calculation of the mean 

value of module temperature, due 

to a faulty operation of 

JB_1.1.1_AN1. 

[02-06-2020;02-11-2020] 

Error in JB_1.1.1_U, 

JB_1.1.3_U, JB_1.1.5_U, 

JB_1.1.7_U 

A significant deviation of IQR for the 

DC Voltage of INV_1.1, due to a 

faulty operation of JB_1.1.1, 

JB_1.1.3, JB_1.1.5, and JB_1.1.7. 

[14-09-2020;07-10-2020] 

Finally, a full version of the rewrite dataset is expected to be implemented in Python, containing only 

days with all timestamps between 5 AM and 9 PM. 
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4. ML ALGORITHMS FOR PVPP INVERTER 

The fault classification requires the implementation of a hybrid dataset. This dataset is composed of 

real and synthetic data for fault-free and faulty conditions (without noise), respectively. Thus, after 

validating the fault-free data [24], a digital twin (DT) was implemented in Simulink/MATLAB® to 

generate a faulty dataset (due to the lack of real faulty data) [25]. 

 TIMESERIES DATASET 

To reduce the processing time and remove any redundancy that could compromise the model’s 

performance, it was necessary to reduce the total number of features from the hybrid dataset. 

Although, some features were added to overcome the model’s low performance under low irradiance 

and fast weather transitions. 

4.1.1 FEATURE ENGINEERING 

To improve the accuracy of the ML algorithms, some additional features were added to the 

algorithms, to add some contextualization of the data. Most of the new features are weather-related, 

as the weather will dictate the operating conditions of the PV inverter. 

4.1.1.1 SKY’S TYPE 

Shadows in photovoltaic systems due to moving clouds are one of the major causes of losses. Fast 

weather transitions and low irradiance may disable the photovoltaic system operation at maximum 

power point (MPP) [26]. Thus, it is imperative to include the sky's type as a feature. Table 4-1 presents 

the sky’s type classification under consideration for the AI4PV system for each hour. It includes the 

okta cloud cover scale [27]. 

TABLE 4-1: SKY’S TYPE CLASSIFICATION FOR EACH HOUR 

Sky’s Type Okta Definition Condition 

Clear 0-2 Sky clear- Few Clouds IF (value ≥ 75% Clear Sky) 

Partially Clear 3-4 
Scattered IF (value ≥ 50% Clear Sky) 

AND (value < 75% Clear Sky) 

Partilally Cloudy 5-6 
Broken IF (value ≥ 25% Clear Sky) 

AND (value< 50% Clear Sky) 

Cloudy 7-8 
Broken-Overcast IF (value < 25% Clear Sky) 

OR (value ≤ minimum limit) 

The clear’s sky hourly estimation used on AI4PV project doesn’t depend on altitude, longitude, and 

latitude. For the daily classification (Clear, Partially Cloudy and Cloudy) was necessary to calculate the 

weighted average value, only for sunset – 3 hours ≥ timestamp ≥ sunrise + 3 hours, allowing a better 

distinction between the different sky’s types. In Figure 4-1 and Figure 4-2, are represented some 

examples of the daily classifications for the year 2020. 
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                       (A)                                                                                              (B) 

FIGURE 4-1: DAILY CLASSIFICATION FOR 2020-03-20 (A) AND 2020-06-20 (B). 

 

                       (A)                                                                                              (B) 

FIGURE 4-2: DAILY CLASSIFICATION FOR 2020-09-22 (A) AND 2020-12-21 (B). 

In the future, the classification of the sky's type will be implemented using PVLIB/Python library, 

allowing the comparison with the current clear's sky estimation. 

4.1.1.2 SEASON 

In the northern hemisphere (latitude > 0º) is expected that during the summer season, when sunny 

days are more frequent, photovoltaic production will be maximized due to the high irradiance. The 

opposite occurs during the winter when the output production may be almost inexistent. Therefore, 

the classification of seasons was considered as a feature (Table 4-2) [28]. 

TABLE 4-2: SEASON CLASSIFICATION FOR EACH DAY 

Season Start Day Condition 

Spring ‘spring_daystart’ = 20 

Summer 
IF (Year is Leap): ‘summer_daystart’ = 20. 

ELSE: ‘summer_daystart’ = 21 
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Autumn 
IF (Year is Leap) OR (Year-1 is Leap): ‘autumn_daystart’ = 22.  

ELSE: ‘autumn_daystart’ = 23 

Winter 
IF (Year is Leap) OR (Year-1 is Leap) OR (Year-2 is Leap): ‘winter_daystart’ = 21.  

ELSE: ‘winter_daystart’ = 22 

4.1.1.3 WEATHER AND SCADA VARIABLES 

For the current deliverable, the digital twin is composed of one inverter (INV_1.1) and two junction 

boxes (JB_1.1.1 and JB_1.1.2). Additionally, the reduction of the total variable number from 1224 to 

21 was made by the following steps: 

• Considering only two weather features: Ambient Temperature and Plane Irradiation 

(Sensor 1); 

• Including only SCADA variables from the inverter side. Exceptions: All set-point and 

control features; Daily Energy Produced; and Total Energy Produced. 

 FEATURES SCALING AND ENCODING 

Two main steps for data pre-processing are encoding categorical features and scaling numerical 

features. Many methods, such as the K-Nearest Neighbours (K-NN), can’t process categorical 

features. Therefore, encoding is necessary to transform these types of features into numerical data. 

One of the most common methods is the One Hot Encoder, which maps each category in a variable 

with binary values (0 or 1) [29]. 

Additionally, scaling numerical features is required to normalize their range and improve the model 

performance. Rescaling, also known as Min-Max Normalization, is defined by rescaling the range of 

features that are not standard normally distributed to a given range (default range is [0;1]) [30]. 

 HYPERPARAMETERS TUNNING 

Grid Search and Random Search are two of the most common methods for hyper-parameter tuning. 

Their purpose is to determine the estimator with the most accurate predictions. For the classifiers C-

Support Vector (SVM) and Logistic-Regression, was implemented the function GridSearchCV of the 

Scikit-Learn/Python library [31], which includes the cross-validation of the training dataset.  

For the other classifiers, for instance, Light Gradient-Boosting (LightGBM), the Random Search was 

applied through the function RandomizedSearchCV [32]. Compared to Grid Search, Random Search 

allows a faster optimization by selecting random combinations, although it doesn’t guarantee the 

optimal hyper-parameters. 

 FAULT DETECTION ACCURACY 

Multi-class classification can be executed through distinct algorithms such as: 
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• Logistic Regression: an algorithm used to predict the probability of a target variable. 

In multi-class classification, it requires splitting the model into N classes (one-vs-rest). The 

final output will be the class with a higher probability [33] [34]. 

• Random Forest: an ensemble of decision trees which improves the predictive 

accuracy and controls the overfitting [35]. 

• LightGBM: a free and open-source distributed gradient-boosting framework based 

on decision trees to increase the efficiency of the model and reduce memory usage [36]. 

The logistic regression model, illustrated in Figure 4-3, was initially implemented for fault 

classification. The model achieved a Fault Detection Accuracy (FDA) of 80.8%, above the minimum 

value expected of 80% for this key of performance and enabled a perfect prediction of the switch 

open-circuit condition for the dataset spanning from 2021 to 2022. Subsequently, as presented in 

Figure 4-4, the FDA improved to 95.2% through the random forest ensemble method, despite the 

difficulty of distinguishing the fault-free condition from DC cable degradation. 

 

FIGURE 4-3: CONFUSION MATRIX FOR FAULT CLASSIFICATION USING THE LOGISTIC REGRESSION 

CLASSIFIER WITH THE DATASET FROM 2021 TO 2022 
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FIGURE 4-4: CONFUSION MATRIX FOR FAULT CLASSIFICATION USING THE RANDOM FOREST 

CLASSIFIER WITH THE DATASET FROM 2021 TO 2022.  

Additionally, the LightGBM algorithm was implemented for fault classification due to its low memory 

usage, resulting in an FDA of 95.1% (Figure 4-5 (a)).  

 

(A) 
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(B) 

 

(C) 

FIGURE 4-5: CONFUSION MATRIX FOR FAULT CLASSIFICATION USING THE LIGHTGBM CLASSIFIER 

WITH DIFFERENT DATASETS: 2021-2022  (A),  MARCH 2018-2022 (B), AND MARCH 2018-2022 

INCLUDING THE GROUPS OF FEATURES ‘LAGS’ AND ‘STATS’ (C) . 

The LightGBM allowed the testing of the dataset from 2018-03 to 2022, with and without including 

the feature groups 'lags' and 'stats', resulting in an improved FDA of 96.7% and 98.2%, respectively. 

On Table 4-3  are described the groups of features used on Figure 4-5 (c). 
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TABLE 4-3: GROUPS OF FEATURES  

Group of Features Description 

‘irradiance’ Daily Irradiation and Horizontal Irradiance 

‘weather’ All features related to the weather station (WS_[X]) 

Note1: Horizontal Irradiance excluded. 

Note2: Average Module Temperature included. 

Note3: Exclusion of the variables associated with the Plane Irradiance used 

on the clear sky’s estimation. 

‘inv’ All features related to the inverter (INV_[X]) 

‘skytype’ Sky’s type features 

‘time’ All features associated to date, sunrise, and sunset. 

'stats' 

Mean and standard deviation of measurements for all pyranometers in the 

park 

Note: Pyranometers are all features starting with ‘PYR’, but don’t belong to 

‘irradiance’ or ‘weather’ 

‘lags’ 

All features containing 'lag' or 'windowmean': 

• 'lag_N': value of a specific variable (N*Granularity) 

minutes ago; 

• Sliding window that calculates a mean value for the 

measurements within the last 1 hour (for each fault type); 

• Additional sliding window for the Plane Irradiance used on 

the clear sky’s estimation, for each hour (over ≈ 1h) 

Note: Include all features that don’t belong to ‘skytype’, ‘time’, ‘stats’ 

 EXPLAINABLE ARTIFICIAL INTELLIGENCE TECHNIQUES  

Although Interpretability and Explainability are commonly interchangeable, it is possible to define 

both terms separately. A model is interpretable if it is capable of being understood by humans on its 

own. On the other hand, a model is explainable if it is too complex for a human to comprehend and 

requires additional methods/techniques (Explainable Artificial Intelligence Techniques, also called XAI 

Techniques). XAI Techniques “enable human users to understand, appropriately trust, and effectively 

manage the emerging generation of artificially intelligent partners”. In Figure 4-6 is represented a 

diagram of the XAI approaches. 
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FIGURE 4-6: EXPLAINABLE ARTIFICIAL INTELLIGENCE APPROACHES 

The authors of [37] denoted the emergence of XAI techniques in the energy sector by proposing the 

implementation of local, model-agnostic post hoc explanation approaches in the context of PV fault 

detection from a multi-layer perceptron (MLP) model, such as [38] [39]: 

• Feature relevance explanations: aim to measure the importance of a model’s inputs 

to its output . This results in an importance score ranking, where higher scores mean that the 

corresponding variable was more relevant for the model . E.g., SHapley Additive exPlanation 

(SHAP); 

• Local explanations: approximate the model in a narrow area around a specific instance 

of interest . The resulting explanations do not necessarily generalize to a global scale but 

approximate the model around the instance the user wants to explain . E.g., Anchors and 

Diverse Counterfactual Explanations (DiCE). 

4.5.1 ANCHORS 

Anchors is a model-agnostic explanation based on if-then rules, also known as a rule-based learner. 

This method explains individual predictions by finding a set of rules that “anchors” the output 

sufficiently and independently of other features change [40]. 

4.5.2 DICE 

DiCE is a counterfactual explanation and produces feature-perturbed versions of the original 

observations, which result in a change of prediction [41]. The main results are the ones which cause a 

relevant change in the model’s output, like a flip in a predicted class. Nevertheless, DiCE can produce 

highly varying explanations due to its diverse nature, which might be contradictive but could also be 

useful for model debugging [37]. 
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4.5.3 SHAP 

In the case study of [37], and by evaluating the different approaches according to their stability and 

the generated explanations consistency, SHAP recorded the best performance, followed by Anchors 

and DiCE. 

SHAP is a game-theoretic approach to XAI techniques, which computes the contribution of each 

feature on a decision by evaluating their additive measure of importance, also called Shapley value. 

Although, and due to its nature, for consistence and transparent results in local and global 

interpretations, the predictive model may have only independent features [38]. In addition, this 

technique is available in Python [42] and R languages.  

Currently, the XAI techniques are not implemented in the AI4PV project. However, in the context of 

root-cause analysis, it will be expected to use the SHAP method to ensure the transparency and 

consistency of the model, as well to improve the project performance on fault diagnosis and 

localisation. 
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5. ML ALGORITHMS FOR PVPP POWER TRANSFORMER 

The fault classification requires the implementation of a hybrid dataset. This dataset is composed of 

real and synthetic data for fault-free and faulty conditions (without noise), respectively. Thus, after 

validating the fault-free data [24], a digital twin (DT) was implemented in Simulink/MATLAB® to 

generate a faulty dataset (due to the lack of real faulty data) [25]. 

 FEATURE ENGINEERING 

Similarly to what was done for the inverter-related AI algorithms, the same procedure was followed 

for the transformer’s ones. 

In particular, the AI algorithms were developed considering the following features: 

• Weather features: Ambient Temperature and Plane Irradiation (Sensor 1); 

• Including only SCADA variables from the inverter output and transformer side. In 

particular, measurements such as current, voltage, power factor of the output of the inverter 

were considered as this represent the connection point between the inverter and the 

transformer. Measurements on the grid-side were included, such as current injected, voltage 

at the PCC, power factor. 

Additionally, scaling numerical features is required to normalize their range and improve the model 

performance. Rescaling, also known as Min-Max Normalization, is defined by rescaling the range of 

features that are not standard normally distributed to a given range (default range is [0;1]) [30]. 

Hyper-parameter tuning was performed to identify the estimator with the most accurate predictions. 

Grid Search and Random Search are two of the most common methods for hyper-parameter tuning. 

For all the classifiers (Logistic-Regression, Gradient Boosting and Random Forest), was implemented 

the function GridSearchCV of the Scikit-Learn/Python library [31], which includes the cross-validation 

of the training dataset.  

 FAULT DETECTION ACCURACY 

Multi-class classification can be executed through distinct algorithms such as: 

• Logistic Regression: an algorithm used to predict the probability of a target variable. 

In multi-class classification, it requires splitting the model into N classes (one-vs-rest). The 

final output will be the class with a higher probability [33] [34]. 

• Random Forest: an ensemble of decision trees which improves the predictive 

accuracy and controls the overfitting [35]. 

• LightGBM: a free and open-source distributed gradient-boosting framework based 

on decision trees to increase the efficiency of the model and reduce memory usage [36]. 
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The logistic regression model, illustrated in Figure 5-1, was initially implemented for fault 

classification. The model achieved a Fault Detection Accuracy (FDA) of 86.5%, above the minimum 

value expected of 80% for this key of performance.  

 

FIGURE 5-1: CONFUSION MATRIX FOR FAULT CLASSIFICATION OF POWER TRANSFORMER’S FAULTS 

USING THE LOGISTIC REGRESSION CLASSIFIER 

Subsequently, as presented in Figure 5-2, the FDA improved to 91% through the random forest 

ensemble method, despite the difficulty of distinguishing the short circuits on the two low voltage 

windings of the transformer. 
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FIGURE 5-2: CONFUSION MATRIX FOR FAULT CLASSIFICATION OF POWER TRANSFORMER’S FAULTS 

USING THE RANDOM FOREST CLASSIFIER 

Additionally, the LightGBM algorithm was implemented for fault classification due to its low memory 

usage, resulting in an FDA of 96.88% (Figure 5-3). 
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FIGURE 5-3: CONFUSION MATRIX FOR FAULT CLASSIFICATION OF POWER TRANSFORMER’S FAULTS 

USING THE LIGHTGBM CLASSIFIER 
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6. CONCLUSIONS  

This deliverable presented the outcomes developed within the Task 3.1: Root cause analysis and asset 

replacement, which results in the factors that influence the PV performance and the fault detection 

and classification algorithms. Starting from the theory, the PV inverter and power transformer DT 

was used to generate the hybrid dataset, as real faulty data was not available. After the validation of 

the DT, the faults were simulated and added to the dataset, which was later processed by the ML 

algorithms. By pattern recognition, the ML algorithms were able to classify the faults with accuracy 

higher then 90%, which is a promising result. Of course, under a field testing this accuracy should be 

reduced due to noise, unprecedent issues, etc., nevertheless an accuracy above 80% is still achievable, 

as determined by the KPIs of D4.2 [43]. Such development provided two main outcomes after all: the 

digital twin framework, i.e., how to build a hybrid dataset, the main problems faced in such 

developments and their solutions, etc.; and the fault classification algorithms, which provide 

insightful information about the current state of the PVPP, supporting O&M staff on their decision 

making. 
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