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EXECUTIVE SUMMARY 

The photovoltaic (PV) plants are large facilities that have multiple sensors monitoring thousands of 

PV modules, power electronics components, transformers, etc. To develop a solution that will support 

the operation and maintenance (O&M) technicians of these facilities can reduce risks, reduce 

downtime, increase power production, increase early fault detection, etc. 

This report includes a literature review on the recent development of AI (Artificial Intelligence), ML 

(Machine Learning), and DT (Digital Twin) solutions for PV plant O&M. Multiple approaches are 

analysed, mainly for AI, ML solutions which have a wider range of papers and methodologies. 

Regarding the DT, relatively few papers and solutions are found, showing that this is an area of the 

large potential for innovative solutions. Besides the scientific papers, various white papers, technical 

reports, etc., from multiple companies are reviewed to identify the most common issues and practices 

in a PV plant and how to mitigate them by applying AI, ML, and DT solutions. 

The main characteristics that should lead the development of these solutions are: 

• Early fault and failure detection and diagnosis; 

• Root cause analysis; 

• Recommendation of possible causes and solutions of the problem. 

The achievement of these characteristics is dependent on multiple features: real-time data streaming, 

multiple measurement points of electrical data (currents and voltages), historical data analytics in 

combination with previous maintenance reports. Nowadays, the DT system of PV plants is lacking 

when compared to other areas of application in the industry, thus, to develop a DT combined with AI, 

ML algorithms and recommendation systems is a challenging endeavour that will result in many 

innovative outcomes. 
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GLOSSARY OF KEY TERMS 

Artificial Intelligence Artificial intelligence is a wide-ranging branch of computer science concerned with 

building smart machines capable of performing tasks that typically require human 

intelligence. 

Machine Learning 

 

Machine learning is a method of data analysis that automates analytical model 

building. It is a branch of artificial intelligence based on the idea that systems can 

learn from data, identify patterns and make decisions with minimal human 

intervention. 

Deep Learning Deep learning is a subset of machine learning, which is essentially a neural network 

with three or more layers. These neural networks attempt to simulate the 

behaviours of the human brain—albeit far from matching its ability—allowing it to 

“learn” from large amounts of data. 

Fault A fault is an unpermitted deviation of at least one characteristic property 

 (feature) of the system from the acceptable, usual standard condition. 

Failure 

 

Permanent interruption of a system’s ability to perform a required function under 

specified operating conditions. 

Malfunction 

 

Intermittent irregularity in fulfilment of a systems desired function. 

Fault detection 

 

Determination of faults present in a system and time of detection. 

 

Fault diagnosis Determination of kind, size, location and time of detection of a fault by evaluating 

symptoms. Follows fault detection. Includes fault detection, isolation and 

identification 
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1. INTRODUCTION 

The energy generated via photovoltaic (PV) technology is growing more and more every year. China 

is the leader in cumulative capacity installed (253.4 GW), accounting for almost one-third of the global 

capacity. China is followed by the European Union (151.3 GW) and the United States (93.2 GW). The 

cumulative installed capacity stands at 758.9 GW. In Europe, Germany, Netherlands, and Spain are 

the countries with the largest installed capacity growth [1]. Those numbers show that the PV systems 

are continuously increasing. The growth of this market brings along with the need for the 

development of new technologies or the adaptation of existing solutions to improve overall 

performance, increasing productivity and reducing losses (electrical, financial, or time losses). Thus, 

automatic fault and failure detection and diagnosis become paramount. The large number of data 

that a PV plant generates can be very valuable to assist the operator and maintenance team. The use 

of AI (Artificial Intelligence), ML (Machine Learning), and DT (Digital Twin) tools to supervise multiple 

variables and parameters can avoid failure, mitigate faults, reduce downtime, and increase the 

response time for troubleshooting. That is why AI and DTs solutions have been gaining so much 

attention in the PV-systems area. 

Regarding larger PV plants, which can be composed of thousands of PV modules connected in parallel 

and/or in series, their operation and maintenance are not trivial. Multiple types of equipment are 

connected to supply the PV power to the grid: PV modules, cables, and connectors, combiner boxes, 

DC-DC converters, DC-AC converters, transformers, etc. [2]. Each component is subjected to faults 

and/or failures and having a problem in a single part of the PV plant may cause the downtime of 

thousands of PV modules, interrupting the power generation. 

Thus, the constant monitoring of the PV plant is critical to ensure a safe and continuous power supply 

during the daytime: this is achieved by the usage of SCADA systems. However, the use of AI, ML tools 

combined with DT modelling and simulation can greatly improve the work of the O&M (Operation 

and Maintenance) team. These tools can be a gamechanger, enhancing and fostering predictive 

maintenance (through fault diagnosis and detection), thus reducing O&M costs and downtime. 

Beyond that, the development of a recommendation system can supply the O&M team with when, 

where, and what caused the problem, along with some possible solutions to solve the problems. 

It is worth noting that across multiple references (scientific papers and white papers), there are some 

different concepts of fault and failure. Some refer to faults as anomalies, failures as faults, etc. This 

report uses the definitions of fault, failure, detection, diagnosis, etc., presented in [3], according to 

the IFAC Tech Committee Safe process and reported in the glossary of this deliverable. 

 SCOPE OF REPORT 

This report is a Deliverable of Task 1.1 from Work Package 1 of the AI4PV Project. It contains a 

literature review on AI, ML algorithms and DT applications for multiple systems, later focusing in 

power, PV systems regarding O&M. The literature review considers classical and recent scientific 

papers, as well as white papers. The main advancements and gaps in the technology are identified 

and discussed on how it can be improved. Finally, an overview of the AI4PV solutions is reported, 

according to the proposal of the project and updated with the most recent discussion in the area. It is 
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also reported a of set of possible Use Cases (UCs), related to PV plants in which AI4PV solutions can 

play an important role to detect and diagnose faults and failures. 

 OUTLINE OF REPORT 

This deliverable articulates over 6 main Sections. 

Section 1 provides an overview of the report. 

Section 2 provides an overview of the different applications related to PV systems where AI can be 

employed. A short literature review is included, explaining what the main AI methods are for the 

different applications, what are their strengths and limitations. 

Section 3 provides an overview of the actual AI-based solutions for O&M in PV farms. The review 

discriminates academic and industrial works and pinpoint the main limitation and gaps that needs to 

be filled so as to unlock the full potential of AI applications in the solar industry. 

In Section 4 AI4PV solutions and modules are described. For each module a short description of their 

functionalities is included as well as their main objectives, requirements and conditions. Furthermore 

for each module, a set of UCs that will be addressed within the project is provided. 

In Section 5, a list of KPIs is provided. These metrics will be used and monitored during the 

development phase and test campaign so as to validate the AI4PV solutions. They will serve also as 

mean of comparison to benchmark AI4PV technologies against the State of the Art. 

In Section 6, the main conclusions are drawn according to the work developed over the previous 

sections. 
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2. AI APPLICATIONS FOR PV SYSTEMS 

The development of AI solutions for the industry has been increasing during the past decades. The 

use of AI is a large field of research that has multiple applications in different areas: medicine, 

biologics, engineering, gaming, etc. [4]. Regarding power and energy, PV, and power electronics 

systems, the use of AI solutions is not new. AI is already being used to help in the design, development, 

control, and O&M of multiple solutions. For PV plant O&M it is applied through the use of ML and DL 

(Deep Learning) algorithms for historical data analytics [4] [5]. 

Even though the application of AIs started in other areas of industry, they quickly started to be studied 

by power and energy systems and power electronics engineering. The PV systems have features from 

both of these areas, requiring expertise from both fields. Usually, the AI can be applied in different 

phases of an asset, such as design, development, operational, and dismissal [6]. In PV systems is not 

that different, as the AI can be applied for sizing, modelling, control and MPPT (Maximum Power 

Point Tracking), thermal performance, power production forecasting, and faults and failures 

detection and diagnosis [7] [8], i.e., O&M. Those applications are summarized in Table 2.1. 

TABLE 2.1: AI ALGORITHMS FOR PV APPLICATIONS 

Application Algorithms 

Sizing 
ANN (Artificial Neural Network) 

GA (Genetic Algorithm) 
ANFIS (Adaptive Neuro-Fuzzy Inference System) 

Modelling and simulation 

ANN 

GA 

ANFIS 

Control and MPPT GA-FL (Genetic Algorithm – Fuzzy Logic) 

Output power prediction ANN 

Fault and failure (dc side only) 
ANN 

FL 

Regarding O&M application of PV AI solutions, the main methodologies use data from current and/or 

voltage measurements from the PV modules and/or inverters (combined with meteorological data), 

aerial and IR (Infrared) images or clustering-based detection and diagnosis using unlabelled data [8]. 

In some cases, multiple methods can be employed to achieve a common goal, besides the 

combination of those AI techniques with DTs [9]. Those techniques are selected according to the 

available data for the Root Cause Analysis (RCA). Similar to other AI applications, it is important to 

pre-process the data fed to the algorithms, aiming to remove inconsistencies and remove fewer 

valuable data. Besides that, feature engineering is a key factor when developing these solutions [7]. 

Being large systems, the operation and maintenance (O&M) of photovoltaic plants are not trivial. 

There are multiple types of equipment that are prompted to present faults or failures. Whilst some of 

the problems are related to the PV modules soiling, crack, or aging, the inverters, usually, present 

problems related to overvoltage, overheating, or other electrical issues [9]. There are multiple 

variables to be monitored and a large area to cover with sensors, monitoring cameras and/or drones, 

and power electronics equipment [10]. Thus, from the meteorological parameters (solar irradiance 

and temperature), photovoltaic modules parameters (soiling, temperature, voltage, current, etc.), 



D1.1  
Use cases for O&M of solar power plants 

 

 

 

 Page 13 | 60   

and the power electronics equipment parameters (operating status, failure detection, voltage, 

current, total harmonic distortion THD, power factor, temperature, etc.), there could be too much 

information for a technician to be monitoring. Of course, the use of a SCADA system, which greatly 

improves the monitoring of the multiple variables of a PV plant, can help a human employee to keep 

track of what is happening at the plant. However, the tracking capability of a technician is limited and 

many signals and deviations that may indicate a fault or failure are not detected until a failure occurs. 

The use of AI systems to do the processing of this large data set collected from PV plants can provide 

valuable information for the operator and its company [4] [9]. Regarding the energy losses, there are 

three main causes, detailed in Figure 2-1: 

• Internal causes: events that are under control of the O&M team;  

• External causes: all events that are not under control of the O&M team; and  

• PV plant efficiency. 

This project will devout special attention to the inverter, soiling, inverter performance, and 

transformer efficiency. 

Within this section, it is reported a general overview of the applications that employ the use of AI for 

PV systems. 
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FIGURE 2-1: MAIN CAUSES OF ENERGY LOSSES IN PVPLANTS.
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 SOLAR PANEL PARAMETER IDENTIFICATION 

When PV modelling and simulation is employed for both performance prediction and fault diagnosis, 

parameter identification becomes fundamental to ensure high-quality of the results. Usually, PV 

systems are modelled through circuit-based representation such as single or double diode models 

[11]. The error metric used to optimise solar cell parameters is the root mean square error (RMSE) for 

both models compared with the empirical I-V curve provided in the panel’s datasheet. At first hand, 

equivalent parameters can be extracted by operational characteristics of the PV panels retrievable 

from the datasheet (i.e., from the I-V curve, power curve, test at STC and/or OC and/or SC, etc.). 

Nevertheless, in order to take into account ageing processes and deviations due to errors in the 

manufacturing process as well as to better fit the empirical characteristics there is the need to fine-

tune these parameters throughout the lifetime. In this sense, AI can play an important role through 

numerical methods as pattern search and recognition so as to guarantee high accuracy. Table 2.2 

summarises some of the AI method, from the family of the evolutionary algorithms, used for 

parameter identification. 

TABLE 2.2: MOST ADOPTED AI METHOD FOR PARAMETER IDENTIFICATION. 

Reference AI technique Topic covered Data type Output 

[20] GA Double diode 

solar cell 

model 

parameter 

identification 

Starting values used as 

the diode voltages as a 

function of their 

temperature. The 

currents and shunt 

resistances where 

estimated 

The best individuals 

from the final 

generation closely 

traces the 

experimental I-V curve 

[21] Flexible PSO Single and 

double diode 

solar cell 

parameter 

identification 

The fitness function used 

was the RMSE, which was 

dependent on the error 

function of the single and 

double diode model as 

well as the solar panel. 

Standard data was taken 

from R.T.C. and the 

model was 

The proposed FPSO 

algorithm produced 

lower RMSE than the 

others. The I-V curves 

produced from the 

parameter 

identification follows 

the experimental 

curves under different 

irradiance and 

temperature values 

reasonably well  

[22] ABC Parameter 

identification 

of the singles 

The goal was to minimize 

the RMSE compared to 

experimental results, 

gathered from a 57mm 

The proposed IABC 

converged faster and 

with higher accuracy 

(lower RMSE) than the 
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and double 

diode mode 

diameter commercial 

silicon solar cell 

@1000W/m2 and 

25,50,75 and 100℃ 

other algorithms. It 

was further tested on 

solar panels with 

unknown parameters, 

but given I-V curve, 

and produced fairly 

good results 

[23] ANFIS Parameter 

identification 

of the PV 

model (single, 

double, three 

diode model) 

Current and Voltage 

historic data 

It identifies the PV 

model parameters 

even when 

characteristics of the 

PV panels are unknow 

(i.e. datasheets, etc) 

 

 ANOMALY DETECTION IN PV ARRAYS 

PV arrays are one of the most sensitive components in a PV plant and they can be a source of a myriad 

of different failures and underperformance. In order to maximise the power conversion efficiency, 

monitoring PV modules at the highest level is imperative. Typical failures of products are grouped in 

three categories: infant-failures, midlife-failures and wear-out-failures [24]. Infant-mortality failures 

occur in the beginning of the working life of a PV module. Faulty PV modules fail prematurely, thus 

impacting on the overall costs. Figure 2-2a shows the distribution of failures registered by a German 

distributor during the first year of the working life of their PV panels. Besides transport damages, that 

accounts for 5%, the main failures in the field are: j-box failure, glass breakage, loose frame, 

delamination and defective cell interconnect. In Figure 2-2b is shown the distribution of midlife 

failures described in a study of DeGraff  [24] on PV panels operating in the field for 8 years. The study 

shows a high rate of glass breakage (33%), and delamination of internal circuit (36%) followed by 

significant j-box and cables failures (12%), burn marks on cells (10%) and encapsulant failure (9%). 

Finally, wear out failures occurs at the end of the PV modules lifetime. The working life of a PV module 

ends if a safety problem occurs or the PV module power drops under a certain level, which is typically 

defined between 80% and 70% of the initial power. The predominant failure in this stage is 

delamination, loss of isolation due to cell cracks and discolouring [24]. 
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(a)

 
(b) 

FIGURE 2-2: A) INFANT MORTALITY FAILURES AND B) MIDLIFE PV FAILURES [24]. 

In Figure 2-3 are reported type and rate of failures registered by the participants of a survey conducted 

by IEA and reported in [25]. As it can be seen, a plenty of faults might interest the PV panels during 
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their life. Faults as cell cracks, discolouring of pottant, dust soiling, animal/organic soiling, defective 

bypass diode, corrosion of the coating, burn marks, are the most frequent failures in PV panels and 

they also occur throughout the entire lifetime of the panels. 

 

FIGURE 2-3: OCCURRENCE OF THE DETECTED FAILURES [25]. 

The graph in Figure 2-4 shows the occurrence of the spotted failures in the survey that cause a 

measurable power loss, thus failures such as delamination, cell cracks, burn marks, discolouring, 

defective bypass diode, soiling are the ones to which should be paid more attention. 

 

FIGURE 2-4: DETECTED FAILURES THAT REGISTERED MEASURABLE POWER LOSSES [25]. 
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In order to understand how AI algorithms can spot these failures it is important to understand how 

these impact on the performance of the PV panels. 

Delamination (Figure 2-5a) causes peak power losses in PV modules. It is caused by stress forces 

applied on the module at the interfaces deteriorated by heat, UV and moisture. The delamination can 

facilitate the moisture ingress and thus accelerate the corrosion of the panel. Due to the optical loss 

and corrosion-induced the series resistance increase, and the cell delaminated will produce less 

current. This originates the current mismatch, if it significant it will trigger the bypass diode and will 

cause further power losses. 

Cell cracks (Figure 2-5b) are induced by mechanical and environmental factors that cause stress on 

the panel, usually as a result of mechanical forces and thermal stress. Cell cracks can origin different 

result based on the severity of the crack, from soft one such as PV shading to more severe impacts as 

decrease of the cell efficiency. In electric models with distributed series resistance, its effect can be 

taken into account by introducing an additional resistance localised in correspondence of the crack  

[25]. Moreover, in electric models a crack can result also in an increase of the saturation current of the 

diode: the ratio IMP/ISC decreases while VMP/VOC decreases. Flash testing and two-diode model fitting 

of the dark I-V curve of modules undergoing cell breakage can be used to show fundamentally the 

causes of power loss. 

 

FIGURE 2-5: A) DELAMINATION AND B) CELL CRACKS ON PV PANELS. 
 

Soiling of PV modules is not a typical failure mode as cell cracking and delamination since it does not 

affect the long-term reliability of the PV panels, but it is rather a reversible effect as it can be removed 

by cleaning. Soiling can have different origins such as snow, dust accumulation, air pollution, bird 

droppings etc. All these effects cause PV power losses due to reduced optical transmittance. This loss 

can account from 5-20% per year, depending on the location and cleaning strategy [25]. Dust soiling 

(see Figure 2-6a) it’s one of the major sources of soiling losses in desert-like environments and it can 

lead to more severe failures such as abrasion of the module surface (either due to frequent cleaning 

or sand blasting). Abrasion does not affect the reliability of the PV plant, but it rather causes 

performance losses due to deterioration of optical transmittance. A common practise to assess dust 

soiling is to use two irradiance sensors (encapsulated PV cells): one cleaned on a daily basis and the 

other one exposed to the soiling. The transmittance loss is expressed by the Daily Soiling Loss Factor 

(DSLF), which is the ratio between the sum of daily irradiation measured by both sensors 
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(soiled/cleaned). Biological soiling severely impacts on the PV performance. Biofilms – microbial 

communities that can grow on the surface of the PV module – can reduce the portion of light that is 

transmitted through the glass to the PV cells. Besides, they can also contribute to soiling in other 

ways: they can create a surface for the dust to adhere, thus aggravating the module soiling level. The 

other main contributor of biological soiling is from bird droppings (Figure 2-6b), which unlike biofilms, 

cannot be removed by natural cleaning due to rainfall. Bird droppings are opaque and thus can entirely 

block transmission of light of the PV module until they are “manually” cleaned. Furthermore, in severe 

cases the occurrence of bird droppings can cause hot spots where the affected cell acts as a load for 

the remainder of the string. 

 

FIGURE 2-6: A) DUST SOILING AND B) BIRD DROPPINGS ON PV MODULES. 

Bypass diodes are used in silicon PV modules to protect against issues that can arise from local 

defects. If a cell within a string of cells wired in series is shaded or damaged, it will limit the current 

production of that string, and can cause a local hotspot. A bypass diode mitigates this by allowing for 

an alternative current path. Bypass diodes can fail in open or short circuit. If it fails in open, it can pass 

no current and thus it is as the associated cells had not the bypass diode. This failure is insidious as it 

can affect the safety, reliability and performance of the PV modules: as a result, the affected PV cell 

can burn or overheat. On the other hand, if the diode fails in short circuit, it acts as a wire and thus the 

power generated from the affected module is cut off. This failure mode is easily detectable via IR 

images as the damaged cell overheats and thus appears hot in the image (see Figure 2-7). Besides, 

there are some studies [26] that developed solutions to detect failures of the bypass diode, by looking 

at operational data such as voltage drop, open circuit voltage and short circuit current.  

 

FIGURE 2-7: BYPASS DIODE FAILURE DETECTED VIA IR IMAGE. 
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Discolouration is one of the most over degradation mechanisms for PV modules. Discolouration of 

the PV module is a type of degradation generally described as a change of colour of the ethylene-vinyl 

acetate (EVA) encapsulant that turns to brown or yellow (see Figure 2-8a). Discolouration can become 

visible to an observer before module performance (current and therefore power production) start 

decreasing. Discolouration does not present any safety issues, unless it is very severe and localized at 

a single cell, where it could turn on the bypass diode resulting in all the negative effects described 

before [24]. EVA discolouration thus, can significantly reduce the module power output due to the 

reduction of sunlight reaching the module cells. Another form of discolouration is the “snail track” 

(Figure 2-8b). A snail track is a grey/black discolouration of the silver past of the front metallisation of 

screen-printed solar cells [24]. The discolouring speed depends on the season and environmental 

conditions. PV modules affected by snail tracks present high leakage currents and despite 

discolouration does not lead to significant power losses, snail tracks can make cell cracks visible and 

thus reduce PV module production. 

 

FIGURE 2-8: A) EVA BROWNING (OR DISCOLOURATION) AND B) SNAIL TRACKS ON PV MODULES. 

Table 2.3 summarises the main failures for PV panels, their causes and effects as well as some 

detection method that can be adopted to spot these undesirable conditions. 

TABLE 2.3: SUMMARY OF THE MAIN PV ARRAYS' FAILURES. 

Failure/Defect Cause Effect Detection method 

Delamination Stress forces on 

the module surface 

deteriorated by 

heat, UV and 

moisture. 

Peak Power losses – 

increase of the series 

resistance. 

[27] uses Convolutional Neural 

Network (CNN) for feature 

extraction from aerial images and 

SVM for defect classification, 

including delamination.  

Cell crack Mechanical forces 

and thermal stress. 

From PV shading to 

drop of the cell 

efficiency. 

Increase of the 

saturation current. 

[28] uses SVM, RF (random forest) 

and k-NN (k-Nearest Neighbours) 

to process EL images and detect 

and classify PV cracks, micro-

cracks and finger failures. 
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[29] processes EL with CNN to 

detect PV cracks. 

Soiling i) Dust 

accumulation and 

ii) bird droppings. 

i) PV power losses and 

ii) hot spots. 

[30] used ANN to estimate soiling 

losses, considering different 

parameters (panel temperature, 

total irradiance, solar altitude, 

relative humidity and short circuit 

current of the panel). 

[31] uses as inputs the PM10 and 

PM2.5 concentrations, the rainfall 

data, and the tilt angle to estimate 

the soiling losses. 

[32] uses image processing to 

quantify the soiling level of the PV 

panels. 

Bypass Diode 

failure 

Open or short 

circuit of the 

bypass diode, it can 

be caused by 

discolouration. 

In open circuit it 

causes overheat of the 

affected cell. 

In short circuit it 

causes a drop of the 

power output. 

[26] uses FL algorithm with three 

inputs, Percentage of Voltage 

Drop (PVD), Percentage of Open 

Circuit Voltage (POCV), and the 

Percentage of Short Circuit 

Current (PSCC). to detect up to 13 

different faults associated with 

defective and non-defective 

bypass diodes. 

EVA 

discolouration 

and snail 

tracks 

Environmental 

conditions, 

thermal stress 

It causes visible 

change in the colour of 

the PV modules, drop 

of the power output 

and increase of 

leakage currents. 

[27] uses CNN for feature 

extraction from aerial images and 

SVM for defect classification, 

including discolouration and snail 

tracks. 

 

 ANOMALY DETECTION IN THE INVERTERS 

The publications of AI in power electronics systems have been generally increasing since 1990, having 

some ups and downs along the way. However, this continuous increase shows that this is a promising 

field [4] [33]. Basically, the AI application is present in the three life cycles of a power converter, i.e., 
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design, control, and maintenance. Most of the publications study the control of the power converters, 

followed by the maintenance, and design. The maintenance has been the object of study of 12.4% of 

the publications, showing that there is a lot more to be investigated [4]. Some application of AI 

technology to the maintenance of power electronics converters is directly connected to photovoltaic 

systems, as the inverter is one of the main sources of failures and maintenance operation in a solar 

plant [34] [35] [36]. 

According to a study that considered around 100 PV systems, accounting for around 500 MWdc, from 

the year 2003 to 2017, the majority of the issues of the PV plants are related to the inverter (including 

faults on the dc side that led to inverter problem) [36]. The percentage of each problem across several 

PV plants is presented in Figure 2-9 (others refers to trackers, transformers, ac meters, and weather 

station). Still, according to [36], trackers may also be a large problem, being responsible for up to 58% 

of the faults and failures of a PV system where they are employed. As the power converter is the 

gateway for the power from the PV modules to the grid (or any load), they are key equipment to be 

investigated when studying how to improve PV systems with the assistance of AI and DTs. Thus, the 

fault detection and diagnosis of an inverter, both by the application of digital twin or the processing 

of historical data, is a key factor regarding the study of AI technology applied to solar plant O&M [34]. 

A system that models the inverter as a black box is not capable of diagnosing a fault inside it and will 

be missing valuable data, as the inverter is responsible for more than 50% of production loss followed 

by the PV modules (30%) [2]. 

 
FIGURE 2-9: SUMMARY OF FAULTS AND FAILURES ACROSS MULTIPLE PV PLANTS [36]. 

 

Some commercial solutions do not model the inverter, relying on input irradiance vs. output power 

analysis, for instance, thus addressing only the PV plant efficiency. This is a valid approach for fault 

and failure detection, but they lack the diagnosis and recommendation, which would be a great 

addition to the O&M of solar plants. Some commercial solutions present inverter-fault diagnosis, but 

are limited to voltage, current, and/or temperature measurements of the inverter [35]. The detailed 

modelling of the inverter allows a richer diagnosis [34], however, they are very specific and may lack 

the interchangeability that would be desired for such a non-uniform configuration of multiple PV 

plants. Depending on the scope of an application, it must be high-level enough to apply to different 
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solar plants. This is a challenging trade-off, as it is necessary to define how much low-level a model 

must be to present a good fault diagnosis vs. how much high-level a model must be to present good 

interchangeability. 

However, an AI-related technology has been surfacing in the PV systems area: the DT. The digital twin 

is a digital doppelganger of a physical entity (which can be a motor, a car, an airplane, a wind turbine, 

etc.), which is fed with real data from their physical twin to detect faults, failures, performance gaps, 

possible improvements, etc. [6]. This technology, used in multiples areas of industry, is being applied 

for PV systems as well, not only for the design of PV modules and power converters, or to support 

control algorithms like MPPTs, but it is being applied as a powerful tool for O&M of PV plants (solar 

farms) as well [35]. 

Table 2.4 summarises the main failures for inverters [37] [38]. 

TABLE 2.4: SUMMARY OF THE PV INVERTERS’ MAIN FAILURES. 

Failure/Defect Cause Effect Detection method 

IGBT, MOSFETs 

or diodes 

malfunction 

Thermal cycling due 

to inverter power on, 

power off, and power 

level change. 

Thermal runaway, 

ceramic substrate to base 

plate solder fatigue, and 

emitter wire bond 

fatigue, etc., leading to 

short circuits. 

Prediction of thermal 

cycle based on data 

provided by the 

semiconductors’ 

suppliers and continuous 

measurements 

Reactive 

components 

degradation, 

mainly the 

capacitors 

Stress such as 

overvoltages, 

overheating, 

pollution, humidity, 

radiation, etc. 

Irreversible change to its 

properties. Reliability 

reduction. 

Capacitor useful life 

calculation method (it 

doesn´t have a reliable 

method still) and 

continuous 

measurements 

Fans 

malfunction 

Operating rating not 

considered during 

the operation of the 

inverter. 

Electrical components 

overheat, such as IGBTs, 

MOSFETs, diodes, 

capacitors, inductors, 

etc., and resulting failure. 

Temperature monitoring 

to indirectly identify a fan 

malfunction. 

 ANOMALY DETECTION OF THE TRANSFORMERS 

Transformers are a key component in PV plants as they connect the system to the electric grid, and 

they provide electric insulation. Nevertheless, failures on the transformer stations such as 

overheating, and electrical protection failure can lead to drastic consequences such as unplanned 

outages, loss of assets and profit losses (undelivered energy). In [39] failure rates and impact of 

transformers have been studied for 15 real operating PV plants in Spain and Italy, monitored for 15 
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months. This study broke down the transformer station failures into two different categories: failures 

due to operations causes and due to extreme weather conditions. Despite transformer station 

registered a quite low rate, weighting for almost 4% of the total failures, their impact was really 

important as they account for almost 34% of the energy losses [39] . [39] estimates that the energy 

losses associated to transformer operational failures were around 3000 kWh/failure while extreme 

weather conditions lead to a loss of 2500 kWh/failure. It is thus paramount, to detect failures in the 

transformer station (either associated to protection systems or to the transformer itself) at early stage 

so as to allow prompt intervention and contain the associated losses and downtime. [40] have studied 

learning models of transformer behaviour for anomaly detection and condition monitoring using 

Hidden Markov Model (HMM) of healthy transformer behaviour and unexpected operation by 

processing Ultra-High-Frequency (UHF) data collected through UHF sensors mounted on the 

transformer. Currently, different AI-based methods have been studied for transformer faults 

detection and diagnosis. [41] found out that the combination between ANN with evolutionary PSO 

yields better performance in the transformer oil fault prediction than the commonly adopted 

Dissolved Gas Analysis (DGA). [42] on the other hand, focused on transformer fault diagnosis. It was 

noticed that SVM approaches have higher accuracy than ANN due to their better generalization 

ability. However, online detection of failures in the insulation of the transformer is a very rare process, 

as transformer are hardly ever equipped with sensor measuring the status of the insulation, but these 

measurements/tests are rather performed offline, with the transformer disconnected form the plant 

and deployed in a lab. Transformer monitoring and fault detection are mainly focused on electric 

faults. Lightening, over-excitation, switching surges, winding resonance, turn to turn short circuit, 

layer to layer short circuit, partial discharges, insulation tracking, static electrification of oil and 

flashovers are all forms of electrical failure modes [43]. Table 2.5 summarises some of the AI-based 

method studied by the scientific community to detect and spot transformer’s failures. 

TABLE 2.5: SUMMARY OF THE TRANSFORMERS' MAIN FAILURES. 

Failure/Defect Cause Effect Detection method 

Saturated core 

 

Transformer’s primary 

winding overloaded. 

Distorted secondary 

waveshape. As a 

result, the protection 

system will intervene, 

and the system will be 

disconnected from the 

grid. 

[44] uses feedforward 

backpropagation ANN 

classifier to detect 

saturated core, based 

on transformers’ 

Frequency Response 

Analysis (FRA). 

Shorted turn faults Mechanical damage of 

insulation, breakdown 

of electric insulation 

due to overvoltage 

from wrong 

operations or lightning 

strike. 

Massive current flows 

through the windings, 

causing overheating 

and thus power losses. 

Moreover, as a result 

electromagnetic 

forces are applied on 

[45] uses Fully 

Connected Neural 

Network (FCNN) and 

Decision Tree, fed with 

FRA measurements to 

spot different fault 

(short circuit between 
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the windings 

threatening and 

damaging the 

insulation structure. 

turns, broken coil, 

axial displacement, 

etc)  

Open circuit faults Broken winding. Disconnection from 

the grid. Thus, the 

power generated is 

not supplied. 

[44] uses feedforward 

backpropagation ANN 

classifier to detect 

open circuit faults, 

based on 

transformers’ 

frequency response 

analysis (FRA). 

Partial discharge (PD) Loss of insulation due 

to soiling (i.e., dust 

falling in the 

transformer 

winding/core), defects 

in the structure. 

Degradation of the 

dielectric/ insulating 

material performance. 

[46] uses Adaptive 

Tabu Search (ATS) 

based on acoustic 

measurements to 

localise PD in power 

transformers. 
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3. PV O&M SOLUTIONS 

Not only academia has been investigating the DT concept and its applications, as some private 

companies have been developing AI solutions to improve the performance of PV plants: production 

forecasting, control, and MPPTs, and PV plants O&M. Both academia and industry have been 

presenting a good advancement in this area, however, whilst the academia lack the experimental 

verification in larger PV plants, the industry, and its commercial solutions do not have a DT model as 

detailed as other applications (like wind power, manufacturing, medical, etc.). 

The most common issues of PV plants are listed in Table 3.1 [2] [34]. It can be noted that multiple 

types of equipment can present multiple faults and failures. However, the inverter is a very important 

piece of equipment as it is the gateway between the power source and the load (i.e., grid). Some 

commercial solutions lack the detailing of the inverter, modelling it as a black box. Such important 

equipment, responsible for most of the faults, failures, and power losses [2] [36] [47], should have an 

improved DT modelling to better address its problems. 

The main goal of O&M technicians and techniques is to increase the availability (uptime divided by 

the total time) of the PV plant, as the availability depends on the reliability (probability that 

equipment will perform as expected) [2]. Thus, it is interesting to increase the reliability, and to 

achieve that some proper monitoring tools should be employed. Generally, most of the energy lost 

due to an operation or maintenance problem is related to the inverter (up to 50%), followed by the PV 

modules (up to 30%). Nowadays, some manufactures are greatly improving the data collection of 

their inverters [48], whilst the PV modules could have the data collection improved by retrofitting 

[49], even though this is a very expensive employment [2]. Related to non-electrical detection and 

diagnosis, the main technique is the use of aerial and infrared imaging, captured by drones or UAV [2] 

[8], using DL algorithms for the image processing. These image DL processing can be combined with 

the electrical-based detection and diagnosis technique to improve the faults and failures detection 

and diagnosis.  

TABLE 3.1: PV PLANT EQUIPMENT MOST COMMON ISSUES. 

Equipment Faults and Failures 

Combiner boxes Overcurrent (string fuses tripping) 

Connectors Low dc insulation 

PV modules 

Soiling 

Partial shading 

Cracks 

Encapsulation discolouring 

Hotspots 

Electrical sensor 
Open circuit  

Calibration drift 

Power converters 

Switches open or short circuit 

Capacitor or inductor degradation 

Overheating 

Transformers Overvoltage and overheating 
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As these techniques are time-consuming, it is advisable to focus at least on those failures that have 

major impact on the PV plant performance, thus the ones that reduce the availability the most. Along 

with the data analytics strategies that can be applied for PV plants, the digital twin concept is also a 

powerful method that can help the fault detection and identification through a root cause analysis. 

 THE DIGITAL TWIN CONCEPT 

The development of AI and DTs technologies are still in the initial stage for power and energy systems 

O&M [5] [50] [51]. Similar to other areas of industry, for instance, the DT can be applied to power 

equipment health state evaluation. Other applications are digital twin modelling of substations, 

power plant intelligent management, and power equipment failure prediction [52] [53] [54]. It is 

desired that the digital twin of power systems be data-driven, to work in closed-loop with the physical, 

and to present a real-time interaction with its real counterpart [54] [55]. 

The application of AI and DTs solutions is very interesting for PV plants. For instance, if an O&M team 

is called for a repair without knowing what the problem is, they may not be fully prepared to fix the 

problem promptly. In some cases, a single tool or component/part that is missing can result in a 

downtime of days of a solar plant, harming its production. If the O&M team has some initial lead on 

what caused the problem and some suggestions supplied by an AI, they can be more prepared to 

tackle the problem and reduce the downtime of the solar plant, saving costs. 

Even though the DTs are presented as AI solutions, which is relatively true, in this report they are 

treated as two distinct technologies. When referring to AI, in this report, it is willing to mention ML or 

deep learning techniques, whilst when mentioning DT, it is willing to mention modelling of the 

physical twin that is fed by real data in real-time. 

According to the Digital Twin Consortium, a DT is a “virtual representation of real-world entities and 

processes, synchronized at a specified frequency and fidelity.” The DT concept was first introduced in 

2002 by Michael Grieves, and later formalized in a white paper [56] [57]. A DT must have three basic 

elements (illustrated in Figure 3-1): 

I. A real space containing a physical object;  

II. A virtual space containing a virtual object; 

III. A link for data flow from virtual to real space and vice-versa. 

 

FIGURE 3-1: DIGITAL TWIN MODEL AS SEEN IN [6], AS PROPOSED BY GRIEVES [56]. 
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Following that, it was used by NASA, twining their spacecraft. Then, the US Air Force started to use it 

as well, using it for forecasting maintenance needs for aircraft. Since then, the DT concept has been 

evolving ever since [58] [59]. Throughout the literature, the DT had multiple definitions, which are 

derivations of the one stated by Grieves, adapting it to the application of each study. The definitions 

have some keywords, such as integrated system; clone, counterpart; ties, links; description, 

construct, information; simulation, test, prediction; and virtual, mirror, replica. All of these 

classifications have a similar objective, as the correlation between the words is showing [6]. 

The difference between a digital twin and a simulation is that a DT is fairly more complex than a 

simulation, as it is an evolving virtual counterpart of an entity or process. It follows the lifecycle of the 

physical twin, monitoring, controlling, and optimizing the process [6]. The DT allows the prediction 

of failures and allows testing novel scenarios to anticipate the maintenance needs. It can be seen as a 

closed-loop optimization process, where the DT receives the data, process it, and return strategic 

information to the physical twin for its improvement. It is very important to develop a modular and 

highly parameterized architecture, to allow the evolution of the DT as a whole or its modules with the 

physical twin. Nowadays, the DT is applied to manufacturing, medical, transportation, education, 

business, and other industries [60] [61]. Being an engineering/industrial tool, eventually, the DT began 

to be applied to power systems [62]. 

The usage of DT for power electronics systems, which is a core element of a PV plant, has not been 

widely investigated. Some papers are studying the usage of DT for power systems as a whole, such as 

grid control, power grids, power consumption, etc. Besides that, a trend can be noticed for the 

application of DTs for PV systems [34] [63], whilst some have general power electronics application  

[33] [64] [65]. Of course, detecting a fault or failure is important, but the identification of the problem 

is very important too. This methodology is commonly named the RCA (Root Cause Analysis). Not all 

solutions (from academia or industry) have RCA. Some of the commercial solutions, for instance, have 

only detection algorithms, needing an O&M team to survey the PV plant and do the diagnosis. On the 

other hand, some academic solutions have a higher degree of detection and diagnosis but have been 

only validated using simulation of large PV plants or experimental analysis of small PV plants (less 

than ten PV modules residential strings, for instance) [66]. 

Even though the digital twin technology has its origins in spacecraft engineering, it expanded to other 

areas such as manufacturing, aviation (expanding the idea of the first DTs), and healthcare [6]. 

Naturally, the DT also started to be applied to power systems engineering, creating digital twins 

power grids, smart grids, wind turbines, substations, power plant management, power equipment, 

etc. [50] [55] [62]. 

 STATE OF THE ART FOR THE ACADEMIA 

The usage of historical data analytics algorithms combined with electrical modelling of the solar plant 

for fault and failure detection, diagnosis, and recommendation for O&M reports and scheduling is a 

powerful tool for technicians. Whilst some commercial solutions already have developed the 

engineering for such process, academia is improving it trying to develop faster algorithms and/or 

more detailed digital twins. Some of those researches are focusing on power electronics modelling. 
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The electrical modelling can be developed into a DT, as some solutions for O&M usually combine DTs 

with historical data analytics [9]. In that way, some trending on the historical data may be detected 

and diagnosed as a fault or failure, which would halt the solar plant production. By using forecasting 

algorithms, the O&M team can schedule a routine before the failure happens, reducing the downtime 

of the solar plant or performing the maintenance overnight, for instance. Besides that, some 

underperformance can also be detected and diagnosed by the algorithm, informing that, even though 

a behaviour that has been observed in the solar plant will not lead to a failure, it will reduce the power 

plant production (i.e., soiling or inverter overheating). 

Some of the data that can be used for detection and diagnosis is already displayed in a SCADA system 

(which most of the O&M companies provide along with the DTs). However, with the help of AI 

algorithms and electrical modelling/DT, the problems can be diagnosed earlier, in some cases weeks 

ahead of a failure [35] [67]. Thus, the solutions that are being proposed are tools that will help the 

supervisor of a solar plant to identify faults shortly after their trending/deviation start or to detect and 

diagnose a failure based on the input data from a SCADA system and/or based on the test scenarios 

developed using a DT. As a solar plant has multiple equipment interconnected, a lot of data is daily 

recorded. This data can be more useful than simply being displayed on a screen, rather it can be used 

to help the supervisor on monitoring its solar plant. There are interesting academic solutions that 

tackle those problems using different approaches. 

In [67], a inverter-focused solution is presented. The predictive maintenance system consists of the 

learning of some behaviours of the inverter (based on data analytics) that will lead to failure. By 

learning these behaviours, the algorithm can generate alarms, suggesting predictive maintenance of 

the inverter. This strategy must be fed with historical data of operation and maintenance logs. 

In [68], a PV module-centred strategy is developed, looking for problems specifically linked to the 

modules: hot spots, cracks, soiling, disconnection, etc. This solution may be supported by aerial, 

thermal images, and power production data. This is an example that the segmentation of the solar 

plant can be an interesting strategy: the more detailed is the model and the larger the number of 

collected data is, the more precise the diagnosis will be. 

In [66], it is proposed a data-based solution that allows the detection of faults with a prediction rate 

greater than 90% while being able to recognize “degradation patterns” that would lead to failures up 

to one weak ahead of time. Even though the solution is feasible and remarkable, it has a single model 

for the various situations, not considering the seasonality of the solar irradiance for instance. 

However, this strategy has a great potential for development. 

In [69], it is proposed a DTs development based on the analysis of time series and application of DL. 

They achieved a DT with a reconstruction error of 0.1, which is supported by the use of data processed 

by characterization techniques in both the time and frequency domain. However, their solution was 

tested only in specific situations, remembering the gap between academia and industry, and their 

study did not present experimental results using meteorological data. 

In [34], it is proposed a DT development in a FPGA directly connected to a custom-made DC-DC 

converter interfacing the PV module with a DC-bus with other PV modules. It is presented a very fast-
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response solution, detecting and diagnosis multiple faults and failures. However, it was tested in a 

two-PV-modules DC-bus, thus, it still needs to be validated in a large PV plant. Also, the employment 

of an FPGA for each PV module and its DC-DC converter may be very expensive, similar to the 

problem of employing retrofitting for data-collection of the PV modules [2]. Besides that, the use of 

a custom-made power converter and controller (FPGA) may not be feasible in a larger PV plant. 

Usually, the inverter firmware is not accessible nor the control algorithms. A feasible solution for 

practical application must consider that some valuable data is not accessible in a real scenario. This is 

one of the concerns that should be addressed in this area: filling the gap between academia and 

industry by combining DTs and AI solutions that will be validated using real operational data and 

tested in real PV farms. This paper has a very interesting solution, however, the gap between academy 

and industry is its weakest point. 

In [70], is presented a 1SVM solution for fault and failure detection of problems on the DC-side (PV 

modules) of a solar plant. They proved that the 1SVM is a better solution than other clustering 

algorithms (such as k-means, mean-shift, etc.) for this application. Even though their solution requires 

a high level of expert knowledge on PV systems (which is not a major problem), they do not make use 

of SCADA information. The SCADA data is the available information that a commercial PV plant could 

provide and should be considered when addressing PV plant O&M solutions. Similar to other works, 

they have not tested its solution using real data of a real system, they have only used simulation data.  

In [71], it is proposed an unsupervised fault detection algorithm, featuring an unsupervised 

reconstruction-based model using variation autoencoder using a generic framework. They achieved 

a solution that can be applied not only for PV systems but to text and videos, for instance, due to its 

generic framework. Thus, this is a generalized approach having PV data as a dataset for training and 

validation. Their study is limited to uni-variable series, which is a limitation due to the multiple 

correlations between the available data in PV plants. Nevertheless, this work presented a promising 

strategy. 

The use of data analytics to achieve a digital twin PV plant is a relatively new idea, having some 

publication such as [66] [69], whilst the idea itself has been applied in other fields of industry [72]. This 

novel idea is to combine the strategy of the digital twin and the data analytics-based forecasting 

algorithms into a single solution. In that way, the DT that will be achieved is not only developed based 

on design, modelling, and control of a power converter, nor the predictions are only based on 

historical data sets. The proposed solution applies the AI algorithms to develop a DT base on the data 

set, allowing detection, diagnosis, and some level of recommendations. This is an interesting solution 

since the combination of AI algorithms with DT has been applied to multiple areas of industry, thus, 

it should be a future improvement for PV plants O&M. 

 COMMERCIAL SOLUTIONS 

The industry has already been developing AI and/or DTs solutions for O&M of solar farms. However, 

based on their white papers, blog posts, reviews, etc., it still is a challenge to develop a highly detailed 

fault and/or failure diagnosis solution. The most promising solutions seem to be the ones that 

combine historical data analytics with DTs. 
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GE Renewable Energy [73] have been using the Predix combined with APM (Asset Performance 

Management) software, their industrial internet platform, to process collected data from solar plants 

and to provide insightful information about patterns, trends, and behaviours. They exemplify that by 

having a “crystal ball”, the operator of a solar plant can schedule maintenances during the night-time, 

days ahead of a failure coming to occur. Also, it allows the maintenance team to move to the solar 

plant site with most of (or all) the tools and spare parts needed for the specific maintenance, avoiding 

the solar plant to be inoperative during days while the problem is identified and fixed. Their strategy 

consists of the DT being a “perfectly healthy” doppelganger of solar farms and to use it as a 

benchmark to detect faults that are resulting in lower efficiency. 

They have solar plants powered by GE’s inverters, measuring 200 different pieces of data, such as 

critical components temperatures and voltages. However, in some cases, this may cause a “data-

overflow”, thus, they advocate that rather than having big data at their disposal, it is better to have 

intelligent data (this is a recurring worry in this area, as only the useful/valuable data should be stored 

and shared with the DT). They install small, secure data-collection devices that will feed Predix, which 

will clean the data, analyse it and turn it into a “morning newspaper” of the solar plant for the 

operator. Similar to other solutions, at a high level, their Solar Plant software compares the real 

outputs with the outputs of the DT, tracking the key performance indicators (KPIs) and searching for 

deviations. Their software is capable of pointing out what/where the solar plant could be modified for 

a performance improvement and it generates alerts before failures, fostering predictive maintenance. 

Their solution has a level of detail that is capable of giving insight for O&M teams of which resources 

they are going to need to repair, recommending actions to prevent and repair components and 

subcomponents failures. They summarize their solutions with the following highlights: understand 

performance gaps, identify areas for improved performance, and adopt predictive maintenance 

strategies. They can achieve a 40% reduction in power production losses, 30% increase in plant team 

productivity, and 20% reduction in O&M cost. They present a strong impact solution, using previous 

tools developed by the company for other areas of industry, but that can be adapted for PV plants. 

 

FIGURE 3-2: ABB’S KEY CONCEPTS FOR DT MODELING: DEGRADATION, ROF, AND RUL [48]. 
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ABB [48] advocates that the use of simulations and digital twins is a necessary technology for further 

development of the industry. The DTs simplify the accessibility of data and verification of scenarios 

and properties. However, the models do not need to be exact clones of the physical twin, as they 

should merely reflect the most important asset behaviours to be explored. They have developed the 

ABB Ability Aurora Vision Plant Management Platform, which has an input of ABBs inverters data and 

multiple ABB’s powered solar plants throughout the world. Their modelling features PV modules, 

inverters, sensors, meteorological units, energy storage systems, and power grids. They focus on 

three key interrelated concepts (illustrated in Figure 3-2): degradation, RoF (Risk of Failure), and RUL 

(Remaining Useful Life). 

In their concept, the degradation of a physical asset decreases the RUL and increases the RoF. 

However, the degradation can be mitigated by maintenance actions to enhance production and 

performance, before failure or end of life. They also specify the used algorithm for certain types of 

data, as shown in Figure 3-3. The usage of different algorithms for different faults or failures is a 

recurrent solution in this area. The data classification is a very important step in their development, 

as the DT will generate results as good as the data that is fed to it. They have developed a strong 

solution based on various historical data from weather, production, inverter-metrics, etc., providing 

a strong competitor for solar power DTs solutions. 

 

(a) 

 

(B) 

FIGURE 3-3: ABB’S CLASSIFYING ANALYTICS ALGORITHMS [34]: (A) ROFS; AND (B) RULS. 

DNV GL [35] calls for a “ramp up” from industry to improve their measurements and data collection, 

aiming the use of AI technologies for solar plant improvement, embracing predictive maintenance. 

They also mention that there is a gap between academia and industry and that both should work hand 

in hand to fill this gap. They call for an approach more inverter-centred, as it is the equipment that 

fails more often. However, they say that their approach can be extended to any part of the solar plant. 

They advocate that the predictive maintenance should include: 
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• Anomaly detection; 

• Performance degradation; 

• Planned maintenance; 

• Remaining useful life. 

They have developed a predictive maintenance system that can detect up to 83% of inverter failures 

a week ahead of the problem. But this rate is only achievable if the ML algorithm is fed with detailed 

and high-quality maintenance logs. Later, they developed a more generalized algorithm, which relies 

on LoF (Local outliner Failure), VAE (Variational Auto Encoders) and AE (Auto Encoders) for baseline 

modelling. They demonstrated two case studies for their algorithms: predictive maintenance and 

anomaly detection. They mention that the development of the IoT can allow the evaluation of data 

that are not usually available in SCADA systems, such as vibration and THD. DNV GL presents a very 

interesting solution, targeting some key parameters of the inverter, which seems to be an intelligent 

approach. 

Sunsniffer [49] developed a set of hardware and software that help the scheduling of replacement, 

cleaning, or maintenance of photovoltaic modules. They use additional hardware to be connected to 

the PV modules (retrofit), improving the data collection and availability: they are focused on the PV 

module side. The more sensors added to the solar plant, the more data collected, resulting in precise 

fault detection and diagnosis. They do not seem, however, to have a large development investigating 

the power electronics equipment. 

Reuniwatt [74] has an irradiance-to-production digital twin that combines the estimated irradiance 

that uses satellite data to calculate the global irradiance, then compares it with the output power of 

the solar plant, which is provided by the grid manager. Their product allows to spot production 

reduction over time, which is valuable data for the supervisors, but they lack detailing of the fault 

detection and diagnosis. They have a solution that sees the whole PV plant as a “black-box”. After a 

fault or failure detection, the diagnosis stage must be done on-site. They present a high-level solution 

that can detect some production issues but cannot provide root cause analysis. To provide fault 

diagnosis (or identification) it is required multiple data from multiple points of the solar plant: the 

more “segmented” the data collected is, the more precise the model is, thus allowing to point where 

the failure is. This, at first, is a simpler analysis, but it can be greatly improved depending on how much 

data is available and how interesting is to create such a detailed model of the solar plant. 

Other companies also have been developing digital twin solutions for the industry as a whole (such as 

IBM) or with PV-focused products (such as Pratiti tech), however, it can be noticed that the 

commercial solutions are mainly focused on: production evaluation, if the production is lower than the 

expected/simulated by the digital twin, the system will alert the supervisor; and image evaluation, by 

visually inspecting the modules for hotspots or crackers, which will lead to failures. These parameters 

are important, but there is more to explore. The more detailed information extracted from the 

measured data is generated, a faster and higher precision failure detection and diagnosis system can 

be implemented. 
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The detailed digital twinning of the inverter is an interesting development area, as they are 

responsible for most of the failure events of a solar plant, ranging from roughly 30% up to 90% in some 

scenarios [36] [47] [67]. It is worth to mention that some studies consider an inverter-fault problem 

even if the problem’s origin is associated with the PV modules, which eventually lead to an inverter 

fault. To model the inverter as a “black-box” will diminish the evaluation capability of the digital twin. 

Having current, voltage, and temperature measurements can provide a lot of data to be analysed for 

trending behaviours of the inverter that can lead to failure, for instance. Thus, the next step of DT for 

PV O&M should be focused on improving the modelling of the power electronics equipment. 

 THE GAPS IN THE SOTA 

It can be observed that the presented solutions lack the evaluation of the input and output current 

and voltages of the power converters, which can lead to the detection and diagnosis of modulation 

fault (over- and sub-modulation), the evaluation of the THD, PF, etc. These parameters could be 

evaluated as possible indicators of malfunctioning. 

In the area of AI for O&M of solar plants, a major challenge surfaces on the diagnosis [9] [34] on how 

it is possible to discriminate faults that have the same results (i.e., soiling and cracks might both lead 

to a reduction of the power output). For instance, for a study that accounts only for the input 

irradiance and output power on the grid, in case of a fault or failure detection, it does not have enough 

data to diagnose the problem as an inverter-fault, DC-DC converter-fault, PV module hotspot, PV 

module crack, PV module disconnection, soiling, etc. If some sensors are added to the inverter, for 

instance, now this data can be used to verify if, in case of detection, the inverter is presenting some 

problem or not. Even more: by having thermal data of the panels, it can be diagnosed if a PV module 

is overheating, thus causing the failure. Having aerial images of the PV modules may also help the 

diagnosis if the problem is a soiling problem. 

There are multiple types of equipment in a solar plant, all of them are prompted to present faults or 

failures, and it is important to collect data from all over the plant, as long as it is relevant data. If the 

collected data is not relevant, it will only slow the algorithms, decreasing the failure detection and 

diagnosis efficiency [35] [48] [69]. 

Even though both academia and industry have achieved great improvements, there is much to 

explore. The gaps are present on both sides, and there is also a gap between them. In this sense, the 

future research should address the gaps in academia, industry, and between those two. Whilst the 

industry still has to improve the detailing and modularity of the PV plant to develop a RCA of the 

problems, academia still has to improve the experimental verification of their solutions. Of course, 

custom-made controllers and power converters are not trivial to implement in a real PV plant, on the 

other hand, to neglect the information that the power electronics equipment data can provide for the 

fault and failure detection and diagnosis is a waste. The main gaps that were identified in the literature 

review of academia solutions and commercial solutions regarding AI and DT for PV plants O&M are 

listed in Table 3.2. 
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TABLE 3.2: IDENTIFIED GAPS IN PV PLANTS O&M SOLUTIONS. 

 Artificial intelligence Digital twin 

Academia 
Training and validation using real data 

Meteorological data consideration 

Generalized approach 

Scalability of the solutions 

Commercial/Industry 
Recommendation system 

Root cause analysis 

Modularity PV plant 

level of detail 

Both Power electronics equipment low level of detail 
 

Whilst most of the gaps in Table 3.2 are already being addressed, the lack of power electronics 

equipment investigation is a key point for innovative work. Being this asset responsible for most of 

the faults, failures, and power losses, the inverter should have more focus on this area of research. 

Interesting variables of an inverter that could be analysed are over- or sub-modulation, THD, and 

power factor. All of this information can be retrieved from output currents and voltage 

measurements. Regarding input current and voltages, some variables can be included: efficiency, 

maximum power point current and voltage, capacitor RUL. 

It would be recommended to segment (modular approach) the solar plant in modules, such as PV 

modules surface, PV module connections, DC-DC converter, and DC-AC converter (inverter). Each of 

those modules may be sub-divided, such as PV modules surface can be divided into soiling, hotspot, 

or crack; PV module connection can be divided into module-to-module, strings, and diodes; DC-DC 

converter can be divided into PI (Proportional-Integral) control, MPPT, temperature, switches (IGBTs, 

MOSFETs, diodes, etc.), reactive elements (capacitors and inductors), and current and voltage 

sensors; the DC-AC converter can be divided into PI control, PLL (Phase-Locked Loop), temperature, 

switches (IGBTs, MOSFETs, diodes, etc.), reactive elements (capacitors and inductors), grid 

connection, and current and voltage sensor. It is worth noting that some data or information may not 

be accessible, such as the MPPT algorithm of the DC-DC converter, the control signal outputs of the 

inverter, the PLL algorithm for grid-synchronization, etc. Thus, it must be evaluated which data is 

available for processing and which data is worth processing for fault and failure detection, diagnosis, 

and recommendation.  
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4. AI4PV SOLUTIONS 

The employment of these two technologies (AI, ML, and DT) to PV systems O&M procedures is 

interesting. They will help the operators monitoring the PV plants, detect faults in early stages, 

provide a fast response to failure, and help the scheduling of maintenances ahead of a problem 

occurrence, reducing the downtime. Being validated as a powerful tool by multiple applications in 

industry and academia, the use of AI, ML, and DT quickly reached the PV systems and power 

electronics systems. However, it can be noticed that there is a gap between academy and industry. 

Also, there is a gap between AI solutions for PV systems and AI solutions for power electronics 

systems regarding O&M of PV plants. 

A preliminary analysis suggests that the equipment that usually presents the highest failure rating 

(i.e., the inverter or the power electronics systems involved [34] [35] [36] should have deeper 

modelling, whilst equipment less prompt to failure should be less detailed. The development time 

should be proportional to these failure ratings. Whilst some papers present a detailed digital twin 

model of the power electronics equipment, they lack experimental verification on real PV plants. On 

the other hand, the DTs presented by some O&M companies lack a high level of detailing of the power 

electronics equipment, presenting an effective DT but that cannot perform RCA, for instance. 

As the goal of the project is to develop a generalized solution that can be applicable to multiple PV 

plants, it is interesting to develop a highly modular approach. This is a directive already recommended 

for DT development and becomes even more important for the use cases of this project. Developing 

a model of the multiple types of equipment of a PV plant (PV modules, connectors, inverters, 

transformers, etc.) allows to easily export the DT to other PV plants, as long as the different 

equipment (PV modules or inverters, as an example) can have its DT module replaced by the correct 

model. 

Besides this modular approach, which is a recommended practice for the digital twins, when studying 

solar power, it may be interesting to have multiple models and to process the historical data 

accordingly to the seasons and PV plant location. Depending on the site of the solar plant, it may go 

through all four seasons, each season presenting different meteorological data patterns (solar 

irradiance, ambient temperature, dust, precipitation, snow, etc.). This may also include the aging of 

the solar plant, as all equipment are subject to deterioration. For instance, the modules are directly 

exposed to the Sun, rain, dust, snow, high temperatures, etc., whilst the inverter, even though being 

housed to be protected from the weather, has intrinsic deterioration as its components have a limited 

lifetime, such as the capacitor and sensors (mostly calibration degradation) [47] [75]. 

It is worth remembering that an evaluation of the available data must be made to define the use cases. 

Usually, the inverter cannot provide access to its firmware, sensor gains, MPPT, or PLL algorithms. 

However, readings as input and output current and voltage, temperature, estimated remaining useful 

life (RUL) of capacitors, etc., may be easily collected. The same applies to PV modules: multiple 

parameters may help the fault and failure detection and diagnosis, however, not all of them are 

available in a real scenario outside of the controlled scenarios of laboratories. 
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The initial approach suggests dividing the entire AI4PV solution into three modules: AI-ML 

algorithms, DT, and recommendation systems. The final goal is the recommendation system, but it 

is not a trivial solution that depends on the development of AI, ML algorithms, and DT. The three 

modules are: 

• Descriptive analytics-module: PV plant DT for fault and failure detection and diagnosis; 

• Prescriptive analytics module for O&M: PV plant data analytics for fault and failure detection 

and diagnosis; 

• Cost-optimised predictive maintenance module: PV plant O&M recommendation system. 

The first module concerns the study of a digital twin (DT) tool for early fault and failure detection and 

diagnosis of PV plants. Based on electrical data and meteorological data, a DT system will help the 

supervisor of the plant to detect the most common problems that may happen in solar parks and 

pinpointed in the Use Case paragraph in Section 4.1.4. 

The second module concerns the study of AI, ML solutions for early fault and failure detection, and 

the diagnosis of PV plants. Based on historical data analytics, and AI, ML algorithm will help the 

supervisor of the plant to detect the most common problems addressed by the UCs detailed in Section 

4.2.4. 

The third module envisions the development of a recommendation system to support the O&M team 

of PV plants. Based on historical data analytics by AI, ML algorithms combined with a DT tool will help 

the supervisor of the plant with causes and solutions for the UCs in exam. Besides the AI, ML, and DT 

tools, the usage of previous maintenance reports will play a key role in the development of the 

recommendation system. 

It is expected that are available data sets and technical data of the power electronics equipment, 

meteorological readings, PV modules, etc. Also, the input from previous maintenance reports can 

provide useful information to develop the recommendation system. All of the modules have a strong 

synergy, as all of them have the same goal. The complete diagram of the systems and the cooperation 

between the AI4PV modules is seen in Figure 4-1. 

 

FIGURE 4-1: COMPLETE DIAGRAM OF THE AI4PV SOLUTION. 
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 DESCRIPTIVE ANALYTICS MODULE OF PV POWER PLANT 

COMPONENTS AND OPERATION: PV PLANT DT FOR FAULT AND FAILURE 

DETECTION AND DIAGNOSIS 

The first AI4PV module entails the study of a digital twin (DT) tool for early fault and failure detection 

and diagnosis of PV plants. Based on electrical data and meteorological data, a DT system will help 

the supervisor of the plant to detect the most common problems that may happen in solar parks 

representative of the UCs addressed within the project (and described in Section 4.1.4). This module 

combined with the others will result in fully automated recommendation system, that detects, 

diagnoses and recommends possible solutions for a problem that may occur in a PV plant. To achieve 

such a goal, the recommendation systems will rely on AI data analytics and DT modelling. By using 

these tools, the system will detect, diagnose and recommend possible fixes for the fault or failure in 

analysis. For instance, if the systems detect an underperformance of the solar park, it will investigate 

the issue and may diagnose that it is a soiling problem, then, it will recommend an optimal scheduling 

for the cleaning that will minimize the operational cost. 

4.1.1 OBJECTIVES 

The ultimate goal of this module is to detect and diagnose fault and failure supporting the O&M team. 

The following objectives are therefore pursued: 

• To detect and diagnose the most common faults, in accordance with the UCs addressed (see 

4.1.4); 

• To increase the reliability, thus availability, of PV plants by reducing the downtime; 

• To increase the number of predictive maintenances and to reduce the number of corrective 

maintenances; 

• To perform the simulation and evaluation of different scenarios to understand what can be 

improved in the PV plant or what is dragging a better performance of the asset. 

In Table 4.1 are shown and described the different actors involved in the DT module. 

TABLE 4.1: ACTORS INVOLVED IN THE DT MODULE. 

Name Type Description 

Real PV plant Facility 

Asset to be monitored using the AI, ML algorithms. 

It is where the data is gathered (currents, voltages, 

temperatures, solar irradiance, etc.) 

O&M Team Technicians 

Technicians that are responsible for the continuous 

operation of the PV plant and eventual 

maintenances. They will be assisted on the O&M of 

the solar farm by the AI, ML algorithms 
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AI tools Algorithm 

AI, ML algorithm responsible for supporting the 

O&M team on the supervising of the PV plant. It 

will be responsible for the faults and failures 

detection and diagnosis, followed by the 

recommendation of a solution for the problem. 

Digital twin Virtual model 

A virtual object that is a representation of a 

physical object. It is fed real-time data so it can 

mimic the behaviour of its real counterpart 

PV modules Asset 

The power source of the PV plants that generates 

electricity via the photovoltaic principle. Are one of 

the main sources of problems on a PV plant. 

Requires constant monitoring to ensure the best 

possible conditions for its operation 

Inverter Asset 

Power converter that is the interface/gateway 

between the PV modules and the grid or ac-load. 

Encapsulates multiple power electronics 

technologies, such as dc-dc converter, dc-ac 

converter, ac-filters, transformers, etc. 

Meteorological station Asset 

Data acquisition systems for valuable 

meteorological data, such as solar irradiance and 

temperature at the vicinity of the PV modules 

SCADA Virtual interface 

A virtual interface that summarizes all valuable 

data and information of the PV plant. Provides 

critical information for the operators of a PV plant, 

supporting the supervision of the facility 

4.1.2 MODULE DESCRIPTION 

This module addresses the operation and maintenance of photovoltaic plants (solar farms) based on 

the digital representation of the physical asset via a digital twin tool. This digital twin will be fed with 

real-time data to generates results as close as possible to the real conditions of the assets considering 

available data, periodicity, etc. 

This will improve the work of the operation and maintenance team by having a benchmark of the PV 

plant. Based on the expected results for the current conditions, the AI-module through AI, ML 

algorithms can evaluate the real output and the virtual output. If a deviation is detected, it may 

indicate a problem at the real asset and trigger alarms. 

To achieve such a level of fidelity, it is necessary a data streaming of the main variables of the PV 

plant, i.e., solar irradiance, temperature, combiner boxes currents and voltages, inverter currents and 

voltages, power electronics temperatures, etc. Not all this data may be available in a PV plant, thus it 

is necessary to understand what is available and what is possible to be streamed in real-time (or as 
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close as possible to that). Then, the DT model can be developed to be as precise as possible, 

depending on the available data. Thus, the PV plant will feed the SCADA, consequently the digital 

twin will feedback valuable information, scenario analysis, predictions, etc., to the real asset (or to its 

operator). 

It is worth noting that the digital twin should be modular to achieve better modelling of the real asset, 

but this is directly linked to the available data to feed the digital twin. More than that, it is interesting 

to have more detailed modelling of the most common assets that are prompted to failure, i.e., PV 

modules and power electronics components. 

The main goal of this module is to support the O&M technicians responsible for the PV plant, to ensure 

an early-fault detection, reducing downtime of the asset, thus, increasing its productivity. The 

proposed approach relies on three sequential steps: 

i. Data collection and streaming in real-time: it is a mandatory condition to develop a digital twin. 

As the DT will be a benchmark of the physical asset (PV plant), to have an early-fault 

detection, it is needed to have efficient data streaming from the multiple sensors of the PV 

plant: pyranometers, temperature sensor, current and voltage sensors, etc. Having this data 

will help in the simulation of the real asset in real-time; 

ii. Data processing: having the input of multiple variables of the PV plant, the DT model will 

process this data by using mathematical equations that model the PV module, inverter, 

transformer, etc., resulting in benchmarked outputs (voltage, current, power, etc.). Having 

this benchmark allows the AI-module to compare it with the outputs of the real assets; 

iii. Failure detection and diagnosis: if a deviation is noted, it may indicate a fault or failure. The 

more measurement points the PV plant has, the more modular the modelling of the DT will 

be, thus allowing to perform a RCA. Identifying the exact cause and location of a fault or 

failure is not trivial, thus the use of a DT with AI, ML algorithm is necessary. 

The real-time monitoring is the first step and it aims to constantly read the data fed to the SCADA. 

This monitoring aims to feed the digital twin with real-time data, so it can develop the benchmark 

results that will be compared with the real asset measurements. The period and discretization of the 

data to be provided by the SCADA system must be compatible with the requirements of the DT. 

Different data should be collected: 

a) meteorological data: The meteorological data of the surroundings of the PV plant is very 

important to understand the conditions of the input power of the system. 

b) PV modules data: The PV modules are the power source of a PV plant, thus, have readings 

such as current, voltage, and temperature can be very valuable to feed the DT model and 

understand and retrieve the operating conditions.  

c) Inverter data: The inverter connects the PV modules to the grid or ac load; thus, it is the 

gateway of the produced energy of a PV plant. This is one of the main assets of a PV plant and 

usually it is where most of the failures occur. 

d) Transformer data: Data on the grid-connection point are necessary to model and retrieve the 

conditions of the transformer in order to point out and spot eventual faults and failures of this 

component. 
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The simulation is the second step and it consists of the processing of the collected data by the 

mathematical modelling of the DT. It is a very important step of the DT loop, as a DT is as good as its 

model. The model takes into consideration the available data that can be fed to the DT. However, it 

is very important to not use “not-so-valuable-data”, as it will increase the processing time and will 

result in a poor model. The irradiance, temperatures, currents, voltages, etc., are processed and a 

benchmarked output is generated. This is the expected output for an operation without problems. 

The smaller the error between the real output and the virtual output, the better, and this indicates 

that all the assets are operating as expected. However, some deviations will eventually appear 

Finally, the third step is the comparison between the expected and real output. This can be done by 

an error analysis; however, the more data is involved, the more complex this process is. That’s why 

the use of AI, ML algorithms can be an interesting tool for this analysis. Based on threshold evaluation, 

the algorithm may detect a fault or failure, that based on the historical data analytics done by the AI-

module, combined with the information provided by the DT, can be diagnosed. This is a challenging 

task, as most of the DT solutions nowadays are for reduced-scale PV plants or have a simple model 

that is not capable of performing a RCA. Besides that, the DT can be used to test different scenarios 

of the real asset. That’s why its modularity is so important: to evaluate multiple scenarios is a powerful 

tool for O&M and business planning. 

4.1.3 MODULE REQUIREMENTS AND CONDITIONS 

The following inputs must be available: 

• Electrical power electronics assets data available for real-time feed, such as current and 

voltage readings from the PV modules, inverter, transformers, temperature measurements, 

etc.; 

• Meteorological (environmental) measurements in the vicinity of the PV modules/solar farm, 

or there are some readings from satellites, such as solar irradiance and temperature in real-

time. 

The following prerequisites must be achieved: 

• Data streaming of valuable data from the PV modules, inverter, and meteorological 

parameters; 

• Technical information on the electrical components (datasheets), such as PV modules ratings 

and inverter ratings. 

4.1.4 USE CASES FOR THE DIGITAL TWIN 

Table 4.2 summarises the UCs that will entail the use of the DT for descriptive analytics, as well as the 

partner(s) responsible of the development and the task of the project in which they will be tackled. In 

particular, through machine learning and optimization algorithm, it will be determined the 

parameters of the “normal” operation of the elements of the PV plant in different situation of 

operations (weather, month, irradiance, clouds, etc). Automatic out of normality detection 
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algorithms will be developed, so real data can be matched with the models with different 

combinations of parameters and data analytics comparison for diagnosis of the problems (i.e., soiling 

and inverter malfunction) and current situation of the assets. 

TABLE 4.2: SUMMARY OF THE DESCRIPTIVE ANALYTICS-RELATED USE CASES. 

Module Application/ Use case Responsible Participant Task 

Descriptive 

analytics 

PV panels Soiling ISOTROL EDP 2.3 

Inverter Inverter shutdown, 

temperature disconnection, 

maintenance stop, late 

awakening. clipping, MPPT 

optimal point. Out of 

normality analysis, 

ISOTROL EDP 2.3 

Solar field 

problems 

Solar field incidences 

detection: string & stringbox 

disconnection, tracker 

blocking, tracker 

misalignment, panel ageing 

ISOTROL EDP 2.3 

Model based sensor 

malfunction detection & 

measurement correction 

(pyranometers, currents, 

power) 

ISOTROL EDP 2.3 

 

 PRESCRIPTIVE ANALYTICS MODULE FOR O&M: PV PLANT DATA 

ANALYTICS FOR FAULT AND FAILURE DETECTION AND DIAGNOSIS 

This module entails the use of AI and ML solutions for early fault and failure detection, and the 

diagnosis of PV plants. Based on historical data analytics, and AI, ML algorithms will help the 

supervisor of the plant to detect the most common problems that may happen in solar parks in 

accordance with the identified use cases. The combination of the AI-module and the DT-module will 

result in a fully automated recommendation systems, that detect, diagnose, and recommend possible 

solutions for a problem that may occur in a PV plant. 
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4.2.1 OBJECTIVES 

The ultimate goal of this module is to detect and diagnose faults and failures that may occur in a PV 

plant, supporting the O&M team in the troubleshooting. The following objectives are therefore 

pursued: 

• To detect and diagnose the most common faults, in accordance with the UCs addressed (see 

Section 4.2.4); 

• To increase the reliability, thus availability, of PV plants by reducing the downtime; 

• To increase the number of predictive maintenances and to reduce the number of corrective 

maintenances; 

• To perform the simulation and evaluation of different scenarios to understand what can be 

improved in the PV plant or what is dragging a better performance of the asset. 

4.2.2 MODULE DESCRIPTION 

This module aims at supporting the operation and maintenance of photovoltaic plants (solar farms) 

through the employment of AI, ML algorithms for monitoring multiple readings from the solar farm 

sensors in real-time (or as close as possible). 

This will improve the work of the operation and maintenance team, allowing the early detection of 

problems that may surface in the PV plant, resulting in a faster response for predictive and preventive 

maintenance. 

The ML, AI algorithms take into consideration the available data that feed the SCADA system to 

recognize patterns and/or trending on the data that may lead to a fault or failure. This analysis takes 

into consideration power electronics data (current and voltage readings from the inverter and/or the 

photovoltaic modules, power converter temperatures, etc.) and meteorological data (solar irradiance, 

temperature, wind speed, etc.). 

In real-time (or as close as possible), the state of the photovoltaic plant is analysed ad if there is any 

significant deviation from the normal scenario/operation, the AI, ML algorithms will detect it before 

a malfunction. If the early detection of the AI, ML algorithm fails and a failure comes to happen, the 

algorithm should alert the operator, nevertheless. Most common problems can also have a 

recommendation attached to their diagnosis, helping in the maintenance process. 

The main objective of the AI-module is to monitor the available data of the SCADA system and ensure 

that any out-of-normality scenario is notified to the operators. In case of any deviation (such as 

overheating, disconnection, soiling, etc.), a set of steps is taken by the algorithm to identify the 

problem and may recommend some possible solutions/fixes. The proposed approach will rely on two 

different and sequential stages: 

i. Data processing and fault detection: In the first stage, the AI, ML algorithm will be 

monitoring the data from the SCADA system in real-time. The data is composed of 

common measurements of a PV plant, such as current, voltages, irradiance, 
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temperatures, etc. Whenever potential deviations are identified, a detection is triggered. 

The detection itself though is not capable of identifying the problem, as this is the second 

step of the algorithm operation;  

ii. Fault diagnosis: In the second stage, the AI, ML algorithms will be working on the 

identification of the problem. Based on a set of pre-determined scenarios in comparison 

with the real-time fed data, the AI, ML algorithm will identify and diagnosis the fault or 

failure, pointing out as specifically as possible (depending on the available data) where is 

the problem and what caused it. Then, based on the historical data analysis in 

combination with previous maintenance reports, the AI, ML algorithm may suggest 

some recommendations for the possible problem. 

The real-time monitoring is the first step of the analysis. It aims to constantly read the data fed to the 

SCADA. This monitoring aims the mitigation of eventual problems that may occur in the PV plant, 

doing the early detection of faults and/or failures. The period and discretization of the data to be 

provided by the SCADA system must be compatible with the requirements of the AI, ML algorithm: 

1. meteorological data: The meteorological data of the surroundings of the PV plant is very 

important to understand the conditions of the input power of the system. 

2. PV modules data: The PV modules are the power source of a PV plant, thus, have readings such 

as current, voltage, and temperature can be very valuable to feed the DT model and 

understand and retrieve the operating conditions.  

3. Inverter data: The inverter connects the PV modules to the grid or ac load; thus, it is the 

gateway of the produced energy of a PV plant. This is one of the main assets of a PV plant and 

usually it is where most of the failures occur. 

4. Transformer data: Data on the grid-connection point are necessary to model and retrieve the 

conditions of the transformer in order to point out and spot eventual faults and failures of this 

component. 

The detection, second step of the process, consists of the analysis of multiple variables from the PV 

plant, especially the electrical ones. It is the first step on the diagnosis and, later, the recommendation 

for the operation and maintenance team. The electrical variables are monitored, and any out-of-

normality behaviour should be noted. If a pre-defined threshold trespasses, a problem is detected. 

However, a problem may have multiple causes and lead to multiple consequences, thus a deeper 

analysis of what is happening must be made. 

Finally, after one or multiple deviations are detected by the AI, ML algorithm, the diagnosis stage 

starts. The analysis of the variables that present deviation will lead to the identification of the fault or 

failure. In this stage, it is very important to understand the correlation between the variables, their 

causes, and consequences. Whilst the detection is a relatively complex stage, the diagnosis is even 

more complex. False diagnosis may lead to dangerous scenarios, larger PV plant downtime, and 

wrong recommendation. Once a problem is detected and diagnosed, a list of recommendations may 

be provided to the operation and maintenance team based on previous maintenance reports. This 
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aims to provide an initial discussion on the problem and how to fix it, saving time for the operation 

and maintenance team and, consequently, reducing the downtime. 

4.2.3 MODULE REQUIREMENTS AND CONDITIONS 

The following inputs must be available: 

• Electrical power electronics assets data available for real-time feed, such as current and 

voltage readings from the PV modules, inverter, transformers, temperature measurements, 

etc.; 

• Meteorological (environmental) measurements in the vicinity of the PV modules/solar farm, 

or there are some readings from satellites, such as solar irradiance and temperature in real-

time. 

• Maintenance reports that can provide useful data for the recommendation system. 

The following prerequisites must be achieved: 

• Dataset for training and validation of the algorithms (power electronics assets, PV modules, 

transformers and meteorological data); 

• Technical information on the electrical components (datasheets), such as PV modules ratings 

and inverter ratings. 

4.2.4 USE CASES FOR O&M PRESCRIPTIVE ANALYTICS TOOLS  

Table 4.3 summarises the UCs that will entail the use of the AI algorithms for perspective analytics, as 

well as the partner(s) responsible of the development and the task of the project in which they will be 

tackled. In particular faults and failures of the three main components (PV panels, inverter and 

transformer) will be addressed. 

TABLE 4.3: SUMMARY OF THE USE CASES RELATED TO THE PERSPECTIVE ANALYTICS TOOL. 

Module Application/ Use case Responsible Participant Task 

Prescriptive 

analytics 

tool: root 

cause 

analysis 

PV panels Soiling EDP  3.1 

Inverter IGBTs, MOSFETs or 

diodes malfunction 

INESC TEC ISOTROL 3.1 

Reactive components 

degradation, mainly 

the capacitors 

Fans malfunction 
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Inverter shutdown, 

temperature 

disconnection, 

maintenance stop, 

late awakening 

ISOTROL INESC TEC 3.1 

Transformer Underperformance EDP INESC TEC 3.1 

Open circuit 

Short circuit 

 

 COST-OPTIMIZED PREDICTIVE MAINTENANCE MODULE: PV PLANT 

O&M RECOMMENDATION SYSTEM 

This module aims at supporting the O&M team of PV plants. Based on historical data analytics by AI, 

ML algorithms combined with a DT tool will help the supervisor of the plant with causes and solutions 

of the most common problems of a PV plant. Besides the AI, ML, and DT tools, the usage of previous 

maintenance reports will play a key role in the development of the recommendation system. 

4.3.1 OBJECTIVES 

The objectives of this module is to recommend solutions for faults and failures, so as to support the 

O&M team. The following objectives are therefore pursued: 

• To present the possible causes of a fault or failure at the PV plant; 

• To present the possible solutions for a fault or failure at the PV plant, including spare parts, 

tools, etc., that may be needed for the repair or replacement of the failed components; 

• To increase the reliability, thus availability, of PV plants by reducing the downtime; 

• To increase the number of predictive maintenances and to reduce the number of corrective 

maintenances. 

4.3.2 MODULE DESCRIPTION 

This module will help the O&M team to respond faster to a fault or failure at the PV plant. As a basis, 

this recommendation system has an AI, ML system that works in cooperation with a DT of the real PV 

plant. 

The recommendation system takes into consideration the inputs from the AI-module and DT-module 

benchmark analysis, and by combining it with historical information on previous maintenances, can 

provide insightful directions for the technicians. Base on the development of the AI, ML algorithms, 

DT, and available maintenances reports, the recommendation system can range from suggestions for 
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solutions to problems related to the PV panels, power electronics converters, transformers, 

connectors, etc. 

Being the last step on the root-cause analysis of a fault or failure, the recommendation system will 

have detected, diagnosed, and recommended possible causes, solutions, parts, tools, etc., that will 

help the O&M technicians on the predictive or corrective maintenances of the PV plant and its 

equipment. 

The main objective of this module is to support the O&M team by doing a preliminary analysis of the 

problem by applying a root-cause analysis. The system will detect, diagnose and provide some 

recommendations about the problem, supporting the O&M team with information on what caused 

the problem, when it happened, and where it happened. Besides that, it will provide a list of possible 

solutions, parts, and tools that may help the technicians to fix the problem. The proposed approach 

will rely on three different pillars: 

i. Digital twin to achieve the benchmarked state of the PV plant or its expected state of 

operation. By having a reference on how the PV plant should behaviour, i.e, currents, 

voltages, output power, etc., it is possible to do a comparative analysis with the real outputs. 

Based on that, any deviations from the expected result may indicate that a fault or a failure is 

happening; 

ii. AI-ML algorithms will be responsible for the historical data analytics, to perform early-fault or 

failure detection based on trending, deviations, etc., that may be noticed on the measured 

data (mostly electrical data). Also, it will verify if the real PV plant is presenting a behaviour 

like its DT, as a deviation between them appear it may be indicative of a fault or a failure. 

Combining the AI, ML with the DT, it is possible to detect and diagnose faults or failures at 

the PV plant and to perform a root-cause analysis; 

iii. Fault diagnosis: the recommendation system will investigate previous maintenances reports 

on what causes similar faults or failures similar to the one that has been diagnosed. In that 

way, it will be possible to provide insightful information to the O&M team, informing 

replacement parts, tools, causes, etc., of a fault or a failure. Thus, based on the historical data 

analysis in combination with previous maintenance reports, the AI, ML algorithm may 

suggest some recommendations for the possible problem. 

Detection and diagnosis is the first step of the recommendation process. The AI, ML in cooperation 

with the DT will be responsible for detecting and diagnosing the faults and failures of the PV plant. 

They will be fed with electrical readings, irradiance and temperature readings, electrical equipment 

temperature readings, etc., to process the data and to investigate any trending or deviation between 

the PV plant and its DT. 

The root-cause analysis consists in the most precise identification of a problem, by clearly describing 

it, establishing a backtrack of what led to the problem, and developing a graph to identify the root 

cause of the problem. This is an intermediate step as it will work as a filter for the multiple solutions 

that the recommendation system may provide to the O&M team. 

After identifying the problem, what caused it, where it happened, etc., the recommendation of 

possible solutions for troubleshooting will take place., based on previous experience and reports. This 
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may indicate, for instance, methodologies, parts, tools, etc., that were used to solve a similar problem 

before. This will help the O&M team to start with a strong set of information about the problem, 

saving the time that would be spent on the investigation of the problem. The system will be based on 

the most common failures but should be configurable for different PV plants in different scenarios, 

adding or removing solutions from the database. 

4.3.3 MODULE REQUIREMENTS AND CONDITIONS 

The following assumptions must be fulfilled: 

• There is a DT model of the PV plant that is generating the expected state/results of the asset; 

• There is AI, ML algorithms constantly monitoring the PV plant historical data and DT 

benchmark states, investigating and trending or deviations that may appear between the PV 

plant and its virtual counterpart; 

• There are maintenance reports that can provide useful data for the recommendation system. 

The following prerequisites must be achieved: 

• Fault and failure detection and diagnosis systems to carry out the root cause analysis of the 

problems; 

• Database with previous solutions for similar problems that may be diagnosed by the AI, ML 

algorithms in cooperation with the DT. 

4.3.4 USE CASES FOR COST-OPTIMISED PREDICTIVE MAINTENANCE 

Table 4.4 Table 4.3 summarises the UCs that will entail the use of the AI algorithms for perspective 

analytics, as well as the partner(s) responsible of the development and the task of the project in which 

they will be tackled. In particular two main tasks will be studied: the optimal scheduling of the O&M 

tasks (taking into account also meteorological parameters, i.e., rainfall that might impact on the cost) 

and asset replacement. 

The optimal scheduling will leverage from an AI-based techno-economic model developed in Task 3.2 

that will be used to predict the RoI of a single PV power plant, and thus assess the impact of different 

O&M policies, considering parameters such as: O&M costs, assets lifetime, PV resource. 

Moreover this module will produce advices for O&M planning by prioritizing actions, asset 

replacement and preventive maintenance tasks so as to optimise the overall RoI. 
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TABLE 4.4: SUMMARY OF THE USE CASES RELATED TO COST-OPTIMISED PREDICTIVE 

MAINTENANCE. 

Module Application/ Use case Responsible Participant Task 

Cost-

optimised 

predictive 

maintenance 

approach 

Optimal O&M scheduling for 

RoI optimisation 

EDP ISOTROL 3.2-3.3 

Asset replacement – Action 

prioritisation 

INESC TEC ALL 3.1 -3.3 

 

  



D1.1  
Use cases for O&M of solar power plants 

 

 

 

 Page 51 | 60   

5. AI4PV KEY PERFORMANCE INDICATORS 

In Table 5.1 are listed some of the KPIs that will be monitored during the AI4PV test campaign so as to validate the developed solutions. Quantifiable 

targets were also identified as well as methods to compute the addressed KPIs. 

TABLE 5.1: AI4PV'S LIST OF KPIS. 

# Name Description Formula Target 

KPI1 

Root mean 
squared error 
(RMSE) between 
empirical and 
reproduced I-V 
curve 

It represents the 
difference between the 
empirical I-V curve 
provided in the 
datasheet of the PV 
module and the 
reproduced curve 
through the DT 
modelling 

𝑅𝑀𝑆𝐸 =
√1

𝑁
∑ (𝐼 − 𝐼𝑖)2𝑁

𝑖=1

𝐼𝑠𝑐
 

Where: 

• 𝐼𝑖, 𝐼𝑖 are the real and modelled output current of the 
PV module. 

• 𝑁 is the number of samples of the empirical I-V curve 

• 𝐼𝑠𝑐 it’s the short circuit current of the PV module 
 

<0.6 

KPI2 
Reduced soiling 
losses (RSL) 

It represents the ratio 
between the energy of 
the soiled PV panel and 
the cleaned one. The 
higher it is, the more 
cleaned the PV is for a 
long period of time. It 
considers losses due to 
both dust or organic 
soiling 

𝑅𝑆𝐿 =
∫ 𝑃𝑃𝑉_𝑠𝑜𝑖𝑙𝑒𝑑𝑑𝑡

𝑇

0

∫ 𝑃𝑃𝑉_𝑐𝑙𝑒𝑎𝑛𝑒𝑑
𝑇

0
𝑑𝑡

 

Where: 

• 𝑃𝑃𝑉_𝑠𝑜𝑖𝑙𝑒𝑑 , 𝑃𝑃𝑉_𝑐𝑙𝑒𝑎𝑛𝑒𝑑 are the output power of the 
soiled and cleaned PV; 

• 𝑇 is the observation time, it can be 1 week, 1 month, 
etc 

>80% 

KPI3 

Number faults 
and/or failures 
detected 
automatically 
through data 
analysis 

The inspection of the 
SCADA and sensor data 
of the inverter by AI, ML 
algorithms will detect 
trending and deviations 
in the measurements 

n.a. 8 
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that may indicate a fault 
or a failure in the PV 
plant 

KPI4 
Fault Detection 
accuracy 

It’s the ratio between 
true faults detected by 
AI4PV and real faults 

𝐹𝐷𝐴 =
𝑁_𝑡𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒_𝑓𝑎𝑢𝑙𝑡

𝑁_𝑡𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒_𝑓𝑎𝑢𝑙𝑡 + 𝑁_𝑓𝑎𝑙𝑠𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒_𝑓𝑎𝑢𝑙𝑡
% >80% 

KPI5 

Number of 
maintenance 
actions at 
validation site 

Depending on the 
output of the 
recommendation 
system, predictive 
maintenance may be 
carried out to avoid 
failures. It is the number 
of interventions advised 
to the O&M team by 
AI4PV recommender 
system. 

n.a. 
10 

actions/month 

KPI6 
Recommendation 
accuracy (RA) 

Number of
 correct 
recommendations 

𝑅𝐴 =
𝑁_𝑔𝑜𝑜𝑑_𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛

𝑁_𝑡𝑜𝑡_𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛
% >70% 

KPI7 

Percentage of 
losses & 
degradation 
underperformance 
quantification 
(AEL_UD) 

The early detection of 
faults in the PV plant is 
important to avoid 
power losses that, 
otherwise, would be 
undetected until a 
failure occurs 

𝐴𝐸𝐿_𝑈𝐷 =
∫ 𝑃𝑠𝑎𝑣𝑒𝑑 𝑑𝑡

∫ 𝑃𝑡𝑜𝑡 𝑑𝑡
% < 5% 

KPI8 
Avoided energy 
losses due to early 
detection 

Avoided energy losses 
due to fault detection at 
early stage 

𝐴𝐸𝐿_𝐸𝐷 =
∫ 𝑃𝑠𝑎𝑣𝑒𝑑 𝑑𝑡

∫ 𝑃𝑡𝑜𝑡 𝑑𝑡
% 4% 
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problems 
(AEL_ED) 

KPI9 

Reduce 
unexpected 
outages (RUO) in 
the transformer 
stations 

It’s the ratio between the 
outages registered with 
the AI4PV solutions in 
place, and the ones 
registered without 
AI4PV. The outages are 
avoided through early 
detection of failures that 
would allow to intervene 
before the worsening of 
the failure. 

𝑅𝑈𝑂 =
𝑂𝑢𝑡_𝐴𝐼4𝑃𝑉

𝑂𝑢𝑡_𝑛𝑜𝐴𝐼4𝑃𝑉
 

Where: 

• 𝑂𝑢𝑡_𝐴𝐼4𝑃𝑉, are the outages registered with AI4PV 
solutions in place 

• 𝑂𝑢𝑡_𝑛𝑜𝐴𝐼4𝑃𝑉 are the outages registered without 
AI4PV solutions in place 

<96% 

KPI10 
Reduce response 
time 

It is the time between 
failure occurrence and 
detection 

𝑅𝑅𝑇 =
𝑅𝑇𝐴𝐼4𝑃𝑉

𝑅𝑇𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙
% 

 
Where: 

• 𝑅𝑇𝐴𝐼4𝑃𝑉 is the response time with AI4PV in place, for a 
particular failure; 

• 𝑅𝑇𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 is the conventional response time 
(without AI4PV) for a particular failure. 

<90% 

KPI11 
Plant availability 
increase (PAI) 

It is the number of 
working hours ensured 
by AI4PV by reducing 
the number of 
downtimes. 

𝑃𝐴𝐼 =
𝑁ℎ𝑜𝑢𝑟𝑠_𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑤𝐴𝐼4𝑃𝑉 − 𝑁ℎ𝑜𝑢𝑟𝑠𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑤/𝑜𝑢𝑡𝐴𝐼4𝑃𝑉

𝑁ℎ𝑜𝑢𝑟𝑠𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑤/𝑜𝑢𝑡𝐴𝐼4𝑃𝑉
 

Where: 

• 𝑁ℎ𝑜𝑢𝑟𝑠_𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑤𝐴𝐼4𝑃𝑉 is the number of working 

hours of the PV plant with AI4PV solutions in place 

• 𝑁ℎ𝑜𝑢𝑟𝑠𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑤/𝑜𝑢𝑡𝐴𝐼4𝑃𝑉  is the number of working 

hours of the PV plant without AI4PV solutions in place 

>5% 
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6. CONCLUSION 

This report presented firstly the most pressing challenges that PV operators face during the operation 

and maintenance of PV parks. A set of possible applications, in which the application of AI solutions 

can be key to fulfil user expectation and needs, were identified. A review on AI, ML algorithms and DT 

solutions for O&M of PV plants is presented as well. A generalized approach is done for those 

technologies, later focusing on power, PV systems and its solutions for O&M usage. Both white and 

scientific papers were reviewed always looking for the categorization of the advancements and 

challenges of the technology applied to PV plants O&M. Base on that, AI4PV solutions and modules 

were proposed updating the project proposal with the most recent discussing regarding this topic. 

The modules were detailed in objectives, conditions, and use cases addressed within the project, 

resulting in the road map for the next steps of the project. Finally, a set of KPIs to be monitored during 

the validation phase were defined, so as to validate and benchmark AI4PV final solutions against 

State-of-the-Art technologies. 
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